- -

Solid hulls and cores of weighted H-infinity-spaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Solid hulls and cores of weighted H-infinity-spaces

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bonet Solves, José Antonio es_ES
dc.contributor.author Lusky, Wolfgang es_ES
dc.contributor.author Taskinen, Jari es_ES
dc.date.accessioned 2019-07-20T20:01:24Z
dc.date.available 2019-07-20T20:01:24Z
dc.date.issued 2018 es_ES
dc.identifier.issn 1139-1138 es_ES
dc.identifier.uri http://hdl.handle.net/10251/123855
dc.description.abstract [EN] We determine the solid hull and solid core of weighted Banach spaces H-upsilon(infinity) of analytic functions functions f such that upsilon vertical bar f vertical bar is bounded, both in the case of the holomorphic functions on the disc and on the whole complex plane, for a very general class of radial weights upsilon. Precise results are presented for concrete weights on the disc that could not be treated before. It is also shown that if H-upsilon(infinity) is solid, then the monomials are an (unconditional) basis of the closure of the polynomials in H-upsilon(infinity). As a consequence H-upsilon(infinity) does not coincide with its solid hull and core in the case of the disc. An example shows that this does not hold for weighted spaces of entire functions. es_ES
dc.description.sponsorship The research of Bonet was partially supported by the project MTM2016-76647-P. The research of Taskinen was partially supported by the Vaisala Foundation of the Finnish Academy of Sciences and Letters. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Revista Matemática Complutense es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Weighted Banach spaces of analytic functions es_ES
dc.subject Solid hull es_ES
dc.subject Solid core es_ES
dc.subject Schauder basis es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Solid hulls and cores of weighted H-infinity-spaces es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s13163-018-0265-6 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2016-76647-P/ES/ANALISIS FUNCIONAL, TEORIA DE OPERADORES Y ANALISIS TIEMPO-FRECUENCIA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F102/ES/ANALISIS FUNCIONAL, TEORIA DE OPERADORES Y APLICACIONES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.date.embargoEndDate 2019-09-30 es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Bonet Solves, JA.; Lusky, W.; Taskinen, J. (2018). Solid hulls and cores of weighted H-infinity-spaces. Revista Matemática Complutense. 31(3):781-804. https://doi.org/10.1007/s13163-018-0265-6 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s13163-018-0265-6 es_ES
dc.description.upvformatpinicio 781 es_ES
dc.description.upvformatpfin 804 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 31 es_ES
dc.description.issue 3 es_ES
dc.relation.pasarela S\367667 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Anderson, J.M., Shields, A.L.: Coefficient multipliers of Bloch functions. Trans. Am. Math. Soc. 224, 255–265 (1976) es_ES
dc.description.references Bennet, G., Stegenga, D.A., Timoney, R.M.: Coefficients of Bloch and Lipschitz functions. Ill. J. Math. 25, 520–531 (1981) es_ES
dc.description.references Bierstedt, K.D., Bonet, J., Galbis, A.: Weighted spaces of holomorphic functions on bounded domains. Mich. Math. J. 40, 271–297 (1993) es_ES
dc.description.references Bierstedt, K.D., Bonet, J., Taskinen, J.: Associated weights and spaces of holomorphic functions. Stud. Math. 127, 137–168 (1998) es_ES
dc.description.references Blasco, O., Galbis, A.: On Taylor coefficients of entire functions integrable against exponential weights. Math. Nachr. 223, 5–21 (2001) es_ES
dc.description.references Blasco, O., Pavlovic, M.: Coefficient multipliers on Banach spaces of analytic functions. Rev. Mat. Iberoam. 27, 415–447 (2011) es_ES
dc.description.references Bonet, J., Taskinen, J.: Solid hulls of weighted Banach spaces of entire functions. Rev. Mat. Iberoam. 34, 593–608 (2018) es_ES
dc.description.references Bonet, J., Taskinen, J.: Solid hulls of weighted Banach spaces of analytic functions on the unit disc with exponential weights. Ann. Acan. Sci. Fenn. Math. 43, 521–530 (2018) es_ES
dc.description.references Constantin, O., Peláez, J.A.: Boundedness of the Bergman projection on $$L_p$$ L p -spaces with exponential weights. Bull. Sci. Math. 139(3), 245–268 (2015) es_ES
dc.description.references Dostanić, M.R.: Multipliers in the space of analytic functions with exponential mean growth. Asymptot. Anal. 65(3–4), 191–201 (2009) es_ES
dc.description.references Dostanić, M.-R.: Integration operators on Bergman spaces with exponential weight. Rev. Mat. Iberoam. 23(2), 421–436 (2007) es_ES
dc.description.references Jevtić, M., Pavlović, M.: On the solid hull of the Hardy-Lorentz space. Publ. Inst. Math. (Beogr.) (N.S.) 85(99), 55–61 (2009) es_ES
dc.description.references Jevtić, M., Vukotić, D., Arsenović, M.: Taylor Coefficients and Coefficient Multipliers of Hardy and Bergman-Type Spaces. RSME Springer Series, vol. 2. Springer, Berlin (2016) es_ES
dc.description.references Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces I. Springer, Berlin (1977) es_ES
dc.description.references Lusky, W.: On the Fourier series of unbounded harmonic functions. J. Lond. Math. Soc. 2(61), 568–580 (2000) es_ES
dc.description.references Lusky, W.: On the isomorphism classes of weighted spaces of harmonic and holomorphic functions. Stud. Math. 175, 19–45 (2006) es_ES
dc.description.references Pau, J., Peláez, J.A.: Volterra type operators on Bergman spaces with exponential weights. Contemp. Math. 561, 239–252. Topics in complex analysis and operator theory. American Mathematical Society, Providence (2012) es_ES
dc.description.references Pavlović, M.: On harmonic conjugates with exponential mean growth. Czech. Math. J. 49, 733–742 (1999) es_ES
dc.description.references Pavlović, M.: Function Classes on the Unit Disc: An Introduction. De Gruyter Studies in Mathematics, vol. 52, p. 449. De Gruyter, Berlin (2014) es_ES
dc.description.references Peláez, J.A., Rättyä, J.: Weighted Bergman Spaces Induced by Rapidly Increasing Weights, vol. 227, no. 1066, pp. vi+124. American Mathematical Society (2014) es_ES
dc.description.references Shields, A.L., Williams, D.L.: Bounded projections, duality and multipliers in spaces of analytic functions. Trans. Am. Math. Soc. 162, 287–302 (1971) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem