Mostrar el registro sencillo del ítem
dc.contributor.author | Bonet Solves, José Antonio | es_ES |
dc.contributor.author | Lusky, Wolfgang | es_ES |
dc.contributor.author | Taskinen, Jari | es_ES |
dc.date.accessioned | 2019-07-20T20:01:24Z | |
dc.date.available | 2019-07-20T20:01:24Z | |
dc.date.issued | 2018 | es_ES |
dc.identifier.issn | 1139-1138 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/123855 | |
dc.description.abstract | [EN] We determine the solid hull and solid core of weighted Banach spaces H-upsilon(infinity) of analytic functions functions f such that upsilon vertical bar f vertical bar is bounded, both in the case of the holomorphic functions on the disc and on the whole complex plane, for a very general class of radial weights upsilon. Precise results are presented for concrete weights on the disc that could not be treated before. It is also shown that if H-upsilon(infinity) is solid, then the monomials are an (unconditional) basis of the closure of the polynomials in H-upsilon(infinity). As a consequence H-upsilon(infinity) does not coincide with its solid hull and core in the case of the disc. An example shows that this does not hold for weighted spaces of entire functions. | es_ES |
dc.description.sponsorship | The research of Bonet was partially supported by the project MTM2016-76647-P. The research of Taskinen was partially supported by the Vaisala Foundation of the Finnish Academy of Sciences and Letters. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Revista Matemática Complutense | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Weighted Banach spaces of analytic functions | es_ES |
dc.subject | Solid hull | es_ES |
dc.subject | Solid core | es_ES |
dc.subject | Schauder basis | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Solid hulls and cores of weighted H-infinity-spaces | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s13163-018-0265-6 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2016-76647-P/ES/ANALISIS FUNCIONAL, TEORIA DE OPERADORES Y ANALISIS TIEMPO-FRECUENCIA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F102/ES/ANALISIS FUNCIONAL, TEORIA DE OPERADORES Y APLICACIONES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.date.embargoEndDate | 2019-09-30 | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Bonet Solves, JA.; Lusky, W.; Taskinen, J. (2018). Solid hulls and cores of weighted H-infinity-spaces. Revista Matemática Complutense. 31(3):781-804. https://doi.org/10.1007/s13163-018-0265-6 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s13163-018-0265-6 | es_ES |
dc.description.upvformatpinicio | 781 | es_ES |
dc.description.upvformatpfin | 804 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 31 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.pasarela | S\367667 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Anderson, J.M., Shields, A.L.: Coefficient multipliers of Bloch functions. Trans. Am. Math. Soc. 224, 255–265 (1976) | es_ES |
dc.description.references | Bennet, G., Stegenga, D.A., Timoney, R.M.: Coefficients of Bloch and Lipschitz functions. Ill. J. Math. 25, 520–531 (1981) | es_ES |
dc.description.references | Bierstedt, K.D., Bonet, J., Galbis, A.: Weighted spaces of holomorphic functions on bounded domains. Mich. Math. J. 40, 271–297 (1993) | es_ES |
dc.description.references | Bierstedt, K.D., Bonet, J., Taskinen, J.: Associated weights and spaces of holomorphic functions. Stud. Math. 127, 137–168 (1998) | es_ES |
dc.description.references | Blasco, O., Galbis, A.: On Taylor coefficients of entire functions integrable against exponential weights. Math. Nachr. 223, 5–21 (2001) | es_ES |
dc.description.references | Blasco, O., Pavlovic, M.: Coefficient multipliers on Banach spaces of analytic functions. Rev. Mat. Iberoam. 27, 415–447 (2011) | es_ES |
dc.description.references | Bonet, J., Taskinen, J.: Solid hulls of weighted Banach spaces of entire functions. Rev. Mat. Iberoam. 34, 593–608 (2018) | es_ES |
dc.description.references | Bonet, J., Taskinen, J.: Solid hulls of weighted Banach spaces of analytic functions on the unit disc with exponential weights. Ann. Acan. Sci. Fenn. Math. 43, 521–530 (2018) | es_ES |
dc.description.references | Constantin, O., Peláez, J.A.: Boundedness of the Bergman projection on $$L_p$$ L p -spaces with exponential weights. Bull. Sci. Math. 139(3), 245–268 (2015) | es_ES |
dc.description.references | Dostanić, M.R.: Multipliers in the space of analytic functions with exponential mean growth. Asymptot. Anal. 65(3–4), 191–201 (2009) | es_ES |
dc.description.references | Dostanić, M.-R.: Integration operators on Bergman spaces with exponential weight. Rev. Mat. Iberoam. 23(2), 421–436 (2007) | es_ES |
dc.description.references | Jevtić, M., Pavlović, M.: On the solid hull of the Hardy-Lorentz space. Publ. Inst. Math. (Beogr.) (N.S.) 85(99), 55–61 (2009) | es_ES |
dc.description.references | Jevtić, M., Vukotić, D., Arsenović, M.: Taylor Coefficients and Coefficient Multipliers of Hardy and Bergman-Type Spaces. RSME Springer Series, vol. 2. Springer, Berlin (2016) | es_ES |
dc.description.references | Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces I. Springer, Berlin (1977) | es_ES |
dc.description.references | Lusky, W.: On the Fourier series of unbounded harmonic functions. J. Lond. Math. Soc. 2(61), 568–580 (2000) | es_ES |
dc.description.references | Lusky, W.: On the isomorphism classes of weighted spaces of harmonic and holomorphic functions. Stud. Math. 175, 19–45 (2006) | es_ES |
dc.description.references | Pau, J., Peláez, J.A.: Volterra type operators on Bergman spaces with exponential weights. Contemp. Math. 561, 239–252. Topics in complex analysis and operator theory. American Mathematical Society, Providence (2012) | es_ES |
dc.description.references | Pavlović, M.: On harmonic conjugates with exponential mean growth. Czech. Math. J. 49, 733–742 (1999) | es_ES |
dc.description.references | Pavlović, M.: Function Classes on the Unit Disc: An Introduction. De Gruyter Studies in Mathematics, vol. 52, p. 449. De Gruyter, Berlin (2014) | es_ES |
dc.description.references | Peláez, J.A., Rättyä, J.: Weighted Bergman Spaces Induced by Rapidly Increasing Weights, vol. 227, no. 1066, pp. vi+124. American Mathematical Society (2014) | es_ES |
dc.description.references | Shields, A.L., Williams, D.L.: Bounded projections, duality and multipliers in spaces of analytic functions. Trans. Am. Math. Soc. 162, 287–302 (1971) | es_ES |