- -

A hybrid multicriteria approach to GPR image mining applied to water supply system maintenance

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A hybrid multicriteria approach to GPR image mining applied to water supply system maintenance

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Carpitella, Silvia es_ES
dc.contributor.author Ocaña-Levario, Silvia Janeth es_ES
dc.contributor.author Benítez López, Julio es_ES
dc.contributor.author Certa, A. es_ES
dc.contributor.author Izquierdo Sebastián, Joaquín es_ES
dc.date.accessioned 2019-07-25T20:01:24Z
dc.date.available 2019-07-25T20:01:24Z
dc.date.issued 2018 es_ES
dc.identifier.issn 0926-9851 es_ES
dc.identifier.uri http://hdl.handle.net/10251/124223
dc.description.abstract [EN] Data processing techniques for Ground Penetrating Radar (GPR) image mining provide essential information to optimize maintenance management of Water Supply Systems (WSSs). These techniques aim to elaborate on radargrams in order to produce meaningful graphical representations of critical buried components of WSSs. These representations are helpful non-destructive evaluation tools to prevent possible failures in WSSs by keeping them adequately monitored. This paper proposes an integrated multi-criteria decision making (MCDM) approach to prioritize various data processing techniques by means of ranking their outputs, namely their resulting GPR image representations. The Fuzzy Analytic Hierarchy Process (FAHP) is applied to weight various evaluation criteria, with the purpose of managing vagueness and uncertainty characterizing experts' judgments. Then, the Elimination Et Choix Traduisant la REalite III (ELECTRE III) method is used to obtain the final ranking of alternatives. A real case study, focusing on a set of four GPR images as outputs of different data processing techniques, is presented to prove the usefulness of the proposed hybrid approach. In particular, the GPR images are ranked according the evaluation of five criteria namely visualization, interpretation, identification of features, extraction of information and affordability. The findings offer a structured support in selecting the most suitable data processing technique(s) to explore WSS underground. In the presented case, two options, namely the variance filter and the subtraction methods, offer the best results. (C) 2018 Elsevier B.V. All rights reserved. es_ES
dc.description.sponsorship Part of this work has been developed under the support of the Universitat Politecnica de Valencia, Valencia (Spain), grant: UPV mobility program for PhD students, awarded to the first author, and of Fundacion Carolina PhD, within its short stage scholarship program awarded to the second author. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Applied Geophysics es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject GPR es_ES
dc.subject Radargrams es_ES
dc.subject Water Supply Systems es_ES
dc.subject FAHP es_ES
dc.subject ELECTRE III es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title A hybrid multicriteria approach to GPR image mining applied to water supply system maintenance es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.jappgeo.2018.10.021 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Carpitella, S.; Ocaña-Levario, SJ.; Benítez López, J.; Certa, A.; Izquierdo Sebastián, J. (2018). A hybrid multicriteria approach to GPR image mining applied to water supply system maintenance. Journal of Applied Geophysics. 159:754-764. https://doi.org/10.1016/j.jappgeo.2018.10.021 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1016/j.jappgeo.2018.10.021 es_ES
dc.description.upvformatpinicio 754 es_ES
dc.description.upvformatpfin 764 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 159 es_ES
dc.relation.pasarela S\372028 es_ES
dc.contributor.funder Universitat Politècnica de València
dc.contributor.funder Fundación Carolina


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem