- -

Comparison of latent variable-based and artificial intelligence methods for impurity detection in PET recycling from NIR hyperspectral images

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Comparison of latent variable-based and artificial intelligence methods for impurity detection in PET recycling from NIR hyperspectral images

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Galdón-Navarro, Borja es_ES
dc.contributor.author Prats-Montalbán, José Manuel es_ES
dc.contributor.author Cubero-García, Sergio es_ES
dc.contributor.author Blasco Ivars, Jose es_ES
dc.contributor.author Ferrer, Alberto es_ES
dc.date.accessioned 2019-07-26T20:01:00Z
dc.date.available 2019-07-26T20:01:00Z
dc.date.issued 2018 es_ES
dc.identifier.issn 0886-9383 es_ES
dc.identifier.uri http://hdl.handle.net/10251/124278
dc.description.abstract [EN] In polyethylene terephthalate's (PET)'s recycling processes, separation from polyvinyl chloride (PVC) is of prior relevance due to its toxicity, which degrades the final quality of recycled PET. Moreover, the potential presence of some polymers in mixed plastics (such as PVC in PET) is a key aspect for the use of recycled plastic in products such as medical equipment, toys, or food packaging. Many works have dealt with plastic classification by hyperspectral imaging, although only some of them have been directly focused on PET sorting and very few on its separation from PVC. These works use different classification models and preprocessing techniques and show their performance for the problem at hand. However, still, there is a lack of methodology to address the goal of comparing and finding the best model and preprocessing technique. Thus, this paper presents a design of experiments-based methodology for comparing and selecting, for the problem at hand, the best preprocessing technique, and the best latent variable-based and/or artificial intelligence classification method, when using NIR hyperspectral images. There is a lack of methodology to address the goal of comparing and finding the best model and preprocessing technique. Thus, this paper presents a design of experiments-based methodology for comparing and selecting, for the problem at hand, the best preprocessing technique, and the best latent variable-based and/or artificial intelligence classification method when using near-infrared hyperspectral images. es_ES
dc.description.sponsorship Universitat Politecnica de Valencia, Grant/Award Number: UPV-FE-16-B18 es_ES
dc.description.sponsorship This research was partially supported by the Universitat Politècnica de València under the project UPV‐FE‐16‐B18.
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Journal of Chemometrics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Classification es_ES
dc.subject Design of experiments es_ES
dc.subject Hyperspectral images es_ES
dc.subject Multivariate image analysis (MIA) es_ES
dc.subject Preprocessing es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.title Comparison of latent variable-based and artificial intelligence methods for impurity detection in PET recycling from NIR hyperspectral images es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/cem.2980 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//UPV-FE-16-B18/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Mecanización y Tecnología Agraria - Departament de Mecanització i Tecnologia Agrària es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat es_ES
dc.description.bibliographicCitation Galdón-Navarro, B.; Prats-Montalbán, JM.; Cubero-García, S.; Blasco Ivars, J.; Ferrer, A. (2018). Comparison of latent variable-based and artificial intelligence methods for impurity detection in PET recycling from NIR hyperspectral images. Journal of Chemometrics. 32(1):1-14. https://doi.org/10.1002/cem.2980 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1002/cem.2980 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 14 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 32 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\350950 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem