Mostrar el registro sencillo del ítem
dc.contributor.author | García-Pardo, José Gabriel | es_ES |
dc.contributor.author | Colomer, Adrián | es_ES |
dc.contributor.author | Naranjo Ornedo, Valeriana | es_ES |
dc.date.accessioned | 2019-07-27T20:02:17Z | |
dc.date.available | 2019-07-27T20:02:17Z | |
dc.date.issued | 2019 | es_ES |
dc.identifier.issn | 1099-4300 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/124304 | |
dc.description.abstract | [EN] Analysis of histopathological image supposes the most reliable procedure to identify prostate cancer. Most studies try to develop computer aid-systems to face the Gleason grading problem. On the contrary, we delve into the discrimination between healthy and cancerous tissues in its earliest stage, only focusing on the information contained in the automatically segmented gland candidates. We propose a hand-driven learning approach, in which we perform an exhaustive hand-crafted feature extraction stage combining in a novel way descriptors of morphology, texture, fractals and contextual information of the candidates under study. Then, we carry out an in-depth statistical analysis to select the most relevant features that constitute the inputs to the optimised machine-learning classifiers. Additionally, we apply for the first time on prostate segmented glands, deep-learning algorithms modifying the popular VGG19 neural network. We fine-tuned the last convolutional block of the architecture to provide the model specific knowledge about the gland images. The hand-driven learning approach, using a nonlinear Support Vector Machine, reports a slight outperforming over the rest of experiments with a final multi-class accuracy of <mml:semantics>0.876 +/- 0.026</mml:semantics> in the discrimination between false glands (artefacts), benign glands and Gleason grade 3 glands. | es_ES |
dc.description.sponsorship | This work has been funded by the Ministry of Economy, Industry and Competitiveness under the SICAP project (DPI2016-77869-C2-1-R). The work of Gabriel Garcia has been supported by the State Research Spanish Agency PTA2017-14610-I. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Entropy | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Gland classification | es_ES |
dc.subject | Hand-crafted feature extraction | es_ES |
dc.subject | Feature selection | es_ES |
dc.subject | Hand-driven learning | es_ES |
dc.subject | Deep learning | es_ES |
dc.subject | Prostate cancer | es_ES |
dc.subject | Histological image | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | First-Stage Prostate Cancer Identification on Histopathological Images: Hand-Driven versus Automatic Learning | es_ES |
dc.type | Artículo | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.identifier.doi | 10.3390/e21040356 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//DPI2016-77869-C2-1-R/ES/SISTEMA DE INTERPRETACION DE IMAGENES HISTOPATOLOGICAS PARA LA DETECCION DE CANCER DE PROSTATA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//PTA2017-14610-I/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.description.bibliographicCitation | García-Pardo, JG.; Colomer, A.; Naranjo Ornedo, V. (2019). First-Stage Prostate Cancer Identification on Histopathological Images: Hand-Driven versus Automatic Learning. Entropy. 21(4). https://doi.org/10.3390/e21040356 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | XXXVI Congreso Anual de la Sociedad Española de Ingeniería Biomédica (CASEIB 2018) | es_ES |
dc.relation.conferencedate | Noviembre 21-23,2018 | es_ES |
dc.relation.conferenceplace | Ciudad Real, España | es_ES |
dc.relation.publisherversion | http://doi.org/10.3390/e21040356 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 21 | es_ES |
dc.description.issue | 4 | es_ES |
dc.relation.pasarela | S\382404 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |