- -

First-Stage Prostate Cancer Identification on Histopathological Images: Hand-Driven versus Automatic Learning

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

First-Stage Prostate Cancer Identification on Histopathological Images: Hand-Driven versus Automatic Learning

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author García-Pardo, José Gabriel es_ES
dc.contributor.author Colomer, Adrián es_ES
dc.contributor.author Naranjo Ornedo, Valeriana es_ES
dc.date.accessioned 2019-07-27T20:02:17Z
dc.date.available 2019-07-27T20:02:17Z
dc.date.issued 2019 es_ES
dc.identifier.issn 1099-4300 es_ES
dc.identifier.uri http://hdl.handle.net/10251/124304
dc.description.abstract [EN] Analysis of histopathological image supposes the most reliable procedure to identify prostate cancer. Most studies try to develop computer aid-systems to face the Gleason grading problem. On the contrary, we delve into the discrimination between healthy and cancerous tissues in its earliest stage, only focusing on the information contained in the automatically segmented gland candidates. We propose a hand-driven learning approach, in which we perform an exhaustive hand-crafted feature extraction stage combining in a novel way descriptors of morphology, texture, fractals and contextual information of the candidates under study. Then, we carry out an in-depth statistical analysis to select the most relevant features that constitute the inputs to the optimised machine-learning classifiers. Additionally, we apply for the first time on prostate segmented glands, deep-learning algorithms modifying the popular VGG19 neural network. We fine-tuned the last convolutional block of the architecture to provide the model specific knowledge about the gland images. The hand-driven learning approach, using a nonlinear Support Vector Machine, reports a slight outperforming over the rest of experiments with a final multi-class accuracy of <mml:semantics>0.876 +/- 0.026</mml:semantics> in the discrimination between false glands (artefacts), benign glands and Gleason grade 3 glands. es_ES
dc.description.sponsorship This work has been funded by the Ministry of Economy, Industry and Competitiveness under the SICAP project (DPI2016-77869-C2-1-R). The work of Gabriel Garcia has been supported by the State Research Spanish Agency PTA2017-14610-I. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Entropy es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Gland classification es_ES
dc.subject Hand-crafted feature extraction es_ES
dc.subject Feature selection es_ES
dc.subject Hand-driven learning es_ES
dc.subject Deep learning es_ES
dc.subject Prostate cancer es_ES
dc.subject Histological image es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title First-Stage Prostate Cancer Identification on Histopathological Images: Hand-Driven versus Automatic Learning es_ES
dc.type Artículo es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.3390/e21040356 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DPI2016-77869-C2-1-R/ES/SISTEMA DE INTERPRETACION DE IMAGENES HISTOPATOLOGICAS PARA LA DETECCION DE CANCER DE PROSTATA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//PTA2017-14610-I/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation García-Pardo, JG.; Colomer, A.; Naranjo Ornedo, V. (2019). First-Stage Prostate Cancer Identification on Histopathological Images: Hand-Driven versus Automatic Learning. Entropy. 21(4). https://doi.org/10.3390/e21040356 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename XXXVI Congreso Anual de la Sociedad Española de Ingeniería Biomédica (CASEIB 2018) es_ES
dc.relation.conferencedate Noviembre 21-23,2018 es_ES
dc.relation.conferenceplace Ciudad Real, España es_ES
dc.relation.publisherversion http://doi.org/10.3390/e21040356 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 21 es_ES
dc.description.issue 4 es_ES
dc.relation.pasarela S\382404 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem