- -

Hypercyclic algebras for convolution and composition operators

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Hypercyclic algebras for convolution and composition operators

Show full item record

Bès, J.; Conejero, JA.; Papathanasiou, D. (2018). Hypercyclic algebras for convolution and composition operators. Journal of Functional Analysis. 274(10):2884-2905. https://doi.org/10.1016/j.jfa.2018.02.003

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/124314

Files in this item

Item Metadata

Title: Hypercyclic algebras for convolution and composition operators
Author: Bès, J. Conejero, J. Alberto Papathanasiou, D.
UPV Unit: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Issued date:
Abstract:
[EN] We provide an alternative proof to those by Shkarin and by Bayart and Matheron that the operator D of complex differentiation supports a hypercyclic algebra on the space of entire functions. In particular we obtain ...[+]
Subjects: Hypercyclic algebras , Convolution operators , Composition operators , Hypercyclic subspaces
Copyrigths: Reserva de todos los derechos
Source:
Journal of Functional Analysis. (issn: 0022-1236 )
DOI: 10.1016/j.jfa.2018.02.003
Publisher:
Elsevier
Publisher version: https://doi.org/10.1016/j.jfa.2018.02.003
Project ID:
info:eu-repo/grantAgreement/MINECO//MTM2016-75963-P/ES/DINAMICA DE OPERADORES/
Thanks:
This work is supported in part by MEC, Project MTM 2016-7963-P. We also thank Angeles Prieto for comments and suggestions.
Type: Artículo

recommendations

 

recommendations

 

This item appears in the following Collection(s)

Show full item record