Bès, J.; Conejero, JA.; Papathanasiou, D. (2018). Hypercyclic algebras for convolution and composition operators. Journal of Functional Analysis. 274(10):2884-2905. https://doi.org/10.1016/j.jfa.2018.02.003
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/124314
Title:
|
Hypercyclic algebras for convolution and composition operators
|
Author:
|
Bès, J.
Conejero, J. Alberto
Papathanasiou, D.
|
UPV Unit:
|
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
|
Issued date:
|
|
Abstract:
|
[EN] We provide an alternative proof to those by Shkarin and by Bayart and Matheron that the operator D of complex differentiation supports a hypercyclic algebra on the space of entire functions. In particular we obtain ...[+]
[EN] We provide an alternative proof to those by Shkarin and by Bayart and Matheron that the operator D of complex differentiation supports a hypercyclic algebra on the space of entire functions. In particular we obtain hypercyclic algebras for many convolution operators not induced by polynomials, such as , , or , where . In contrast, weighted composition operators on function algebras of analytic functions on a plane domain fail to support supercyclic algebras.
[-]
|
Subjects:
|
Hypercyclic algebras
,
Convolution operators
,
Composition operators
,
Hypercyclic subspaces
|
Copyrigths:
|
Reserva de todos los derechos
|
Source:
|
Journal of Functional Analysis. (issn:
0022-1236
)
|
DOI:
|
10.1016/j.jfa.2018.02.003
|
Publisher:
|
Elsevier
|
Publisher version:
|
https://doi.org/10.1016/j.jfa.2018.02.003
|
Project ID:
|
info:eu-repo/grantAgreement/MINECO//MTM2016-75963-P/ES/DINAMICA DE OPERADORES/
|
Thanks:
|
This work is supported in part by MEC, Project MTM 2016-7963-P. We also thank Angeles Prieto for comments and suggestions.
|
Type:
|
Artículo
|