- -

Optimization of the Perturbation Amplitude for EIS Measurements Using a Total Harmonic Distortion Based Method

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Optimization of the Perturbation Amplitude for EIS Measurements Using a Total Harmonic Distortion Based Method

Mostrar el registro completo del ítem

Giner-Sanz, JJ.; Ortega Navarro, EM.; Pérez-Herranz, V. (2018). Optimization of the Perturbation Amplitude for EIS Measurements Using a Total Harmonic Distortion Based Method. Journal of The Electrochemical Society. 165(10):E488-E497. https://doi.org/10.1149/2.1021810jes

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/125095

Ficheros en el ítem

Metadatos del ítem

Título: Optimization of the Perturbation Amplitude for EIS Measurements Using a Total Harmonic Distortion Based Method
Autor: Giner-Sanz, Juan José Ortega Navarro, Emma María Pérez-Herranz, Valentín
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear
Fecha difusión:
Resumen:
[EN] Ohm's generalized law defines the concept of impedance. This law, and thus the definition itself, are only valid if the system fulfills the linearity condition. However, electrochemical systems are typically highly ...[+]
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of The Electrochemical Society. (issn: 0013-4651 )
DOI: 10.1149/2.1021810jes
Editorial:
The Electrochemical Society
Versión del editor: http://doi.org/10.1149/2.1021810jes
Código del Proyecto:
info:eu-repo/grantAgreement/GVA//ACIF%2F2013%2F268/
Agradecimientos:
The authors are very grateful to the Generalitat Valenciana for its economic support in form of Vali+d grant (Ref: ACIF-2013-268).
Tipo: Artículo

References

Sacco, A. (2017). Electrochemical impedance spectroscopy: Fundamentals and application in dye-sensitized solar cells. Renewable and Sustainable Energy Reviews, 79, 814-829. doi:10.1016/j.rser.2017.05.159

Macdonald, J. R. (1992). Impedance spectroscopy. Annals of Biomedical Engineering, 20(3), 289-305. doi:10.1007/bf02368532

Yuksel, R., Uysal, N., Aydinli, A., & Unalan, H. E. (2018). Paper Based, Expanded Graphite/Polypyrrole Nanocomposite Supercapacitors Free from Binders and Current Collectors. Journal of The Electrochemical Society, 165(2), A283-A290. doi:10.1149/2.1051802jes [+]
Sacco, A. (2017). Electrochemical impedance spectroscopy: Fundamentals and application in dye-sensitized solar cells. Renewable and Sustainable Energy Reviews, 79, 814-829. doi:10.1016/j.rser.2017.05.159

Macdonald, J. R. (1992). Impedance spectroscopy. Annals of Biomedical Engineering, 20(3), 289-305. doi:10.1007/bf02368532

Yuksel, R., Uysal, N., Aydinli, A., & Unalan, H. E. (2018). Paper Based, Expanded Graphite/Polypyrrole Nanocomposite Supercapacitors Free from Binders and Current Collectors. Journal of The Electrochemical Society, 165(2), A283-A290. doi:10.1149/2.1051802jes

Wang, C., Xiong, Y., Wang, H., Yang, N., Jin, C., & Sun, Q. (2018). «Pickles Method» Inspired Tomato Derived Hierarchical Porous Carbon for High-Performance and Safer Capacitive Output. Journal of The Electrochemical Society, 165(5), A1054-A1063. doi:10.1149/2.1001805jes

Zhou, X., Cao, L., Li, Z., Zhang, M., Kang, W., & Cheng, B. (2018). Rapid Synthesis of 3D Porous Nitrogen-Doped Carbon Nanospheres (N-CNSs) and Carbon Nanoboxes (CNBs) for Supercapacitor Electrodes. Journal of The Electrochemical Society, 165(5), A918-A923. doi:10.1149/2.0761805jes

Ranjith, P. M., Rao, M. T., Sapra, S., Suni, I. I., & Srinivasan, R. (2018). On the Anodic Dissolution of Tantalum and Niobium in Hydrofluoric Acid. Journal of The Electrochemical Society, 165(5), C258-C269. doi:10.1149/2.0691805jes

Ji, G., Macía, L. F., Allaert, B., Hubin, A., & Terryn, H. (2018). Odd Random Phase Electrochemical Impedance Spectroscopy to Study the Corrosion Behavior of Hot Dip Zn and Zn-Alloy Coated Steel Wires in Sodium Chloride Solution. Journal of The Electrochemical Society, 165(5), C246-C257. doi:10.1149/2.0741805jes

Horvath, D., & Simpson, M. F. (2018). Electrochemical Monitoring of Ni Corrosion Induced by Water in Eutectic LiCl-KCl. Journal of The Electrochemical Society, 165(5), C226-C233. doi:10.1149/2.0391805jes

Bertocci, U. (1997). Noise Resistance Applied to Corrosion Measurements. Journal of The Electrochemical Society, 144(1), 31. doi:10.1149/1.1837361

Bertocci, U. (1997). Noise Resistance Applied to Corrosion Measurements. Journal of The Electrochemical Society, 144(1), 37. doi:10.1149/1.1837362

Bertocci, U. (1997). Noise Resistance Applied to Corrosion Measurements. Journal of The Electrochemical Society, 144(8), 2786. doi:10.1149/1.1837896

Vijayakumar, E., Kang, S.-H., & Ahn, K.-S. (2018). Facile Electrochemical Synthesis of Manganese Cobalt Sulfide Counter Electrode for Quantum Dot-Sensitized Solar Cells. Journal of The Electrochemical Society, 165(5), F375-F380. doi:10.1149/2.1211805jes

Kharel, P. L., Zamborini, F. P., & Alphenaar, B. W. (2018). Enhancing the Photovoltaic Performance of Dye-Sensitized Solar Cells with Rare-Earth Metal Oxide Nanoparticles. Journal of The Electrochemical Society, 165(3), H52-H56. doi:10.1149/2.1311802jes

Gong, C., Hong, X., Xiang, S., Wu, Z., Sun, L., Ye, M., & Lin, C. (2018). NiS2Nanosheet Films Supported on Ti Foils: Effective Counter Electrodes for Quantum Dot-Sensitized Solar Cells. Journal of The Electrochemical Society, 165(3), H45-H51. doi:10.1149/2.0171803jes

Mitra, D., Trinh, P., Malkhandi, S., Mecklenburg, M., Heald, S. M., Balasubramanian, M., & Narayanan, S. R. (2018). An Efficient and Robust Surface-Modified Iron Electrode for Oxygen Evolution in Alkaline Water Electrolysis. Journal of The Electrochemical Society, 165(5), F392-F400. doi:10.1149/2.1371805jes

Yoon, S., Kim, J., Lim, J.-H., & Yoo, B. (2018). Cobalt Iron-Phosphorus Synthesized by Electrodeposition as Highly Active and Stable Bifunctional Catalyst for Full Water Splitting. Journal of The Electrochemical Society, 165(5), H271-H276. doi:10.1149/2.1221805jes

Frey, C. E., Fang, Q., Sebold, D., Blum, L., & Menzler, N. H. (2018). A Detailed Post Mortem Analysis of Solid Oxide Electrolyzer Cells after Long-Term Stack Operation. Journal of The Electrochemical Society, 165(5), F357-F364. doi:10.1149/2.0961805jes

Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2017). Experimental Quantification of the Effect of Nonlinearities on the EIS Spectra of the Cathodic Electrode of an Alkaline Electrolyzer. Fuel Cells, 17(3), 391-401. doi:10.1002/fuce.201600137

Atar, N., & Yola, M. L. (2018). Core-Shell Nanoparticles/Two-Dimensional (2D) Hexagonal Boron Nitride Nanosheets with Molecularly Imprinted Polymer for Electrochemical Sensing of Cypermethrin. Journal of The Electrochemical Society, 165(5), H255-H262. doi:10.1149/2.1311805jes

Wippermann, K., Giffin, J., & Korte, C. (2018). In Situ Determination of the Water Content of Ionic Liquids. Journal of The Electrochemical Society, 165(5), H263-H270. doi:10.1149/2.0991805jes

Zhou, W.-H., Wang, H.-H., Li, W.-T., Guo, X.-C., Kou, D.-X., Zhou, Z.-J., … Wu, S.-X. (2018). Gold Nanoparticles Sensitized ZnO Nanorods Arrays for Dopamine Electrochemical Sensing. Journal of The Electrochemical Society, 165(12), G3001-G3007. doi:10.1149/2.0011811jes

Nakpetpoon, W., Vongsetskul, T., Limthongkul, P., & Tammawat, P. (2018). Disodium Terephthalate Ultrafine Fibers as High Performance Anode Material for Sodium-Ion Batteries under High Current Density Conditions. Journal of The Electrochemical Society, 165(5), A1140-A1146. doi:10.1149/2.0821805jes

Landesfeind, J., Eldiven, A., & Gasteiger, H. A. (2018). Influence of the Binder on Lithium Ion Battery Electrode Tortuosity and Performance. Journal of The Electrochemical Society, 165(5), A1122-A1128. doi:10.1149/2.0971805jes

Cheng, Q., & Zhang, Y. (2018). Multi-Channel Graphite for High-Rate Lithium Ion Battery. Journal of The Electrochemical Society, 165(5), A1104-A1109. doi:10.1149/2.1171805jes

Xia, S., Li, F., Cheng, F., Li, X., Sun, C., Liu, J.-J., & Hong, G. (2018). Synthesis of Spherical Fluorine Modified Gradient Li-Ion Battery Cathode Material LiNi0.80Co0.15Al0.05O2by Simple Solid Phase Method. Journal of The Electrochemical Society, 165(5), A1019-A1026. doi:10.1149/2.1021805jes

Garsany, Y., Atkinson, R. W., Sassin, M. B., Hjelm, R. M. E., Gould, B. D., & Swider-Lyons, K. E. (2018). Improving PEMFC Performance Using Short-Side-Chain Low-Equivalent-Weight PFSA Ionomer in the Cathode Catalyst Layer. Journal of The Electrochemical Society, 165(5), F381-F391. doi:10.1149/2.1361805jes

Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2018). Mechanistic equivalent circuit modelling of a commercial polymer electrolyte membrane fuel cell. Journal of Power Sources, 379, 328-337. doi:10.1016/j.jpowsour.2018.01.066

Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2018). Statistical analysis of the effect of temperature and inlet humidities on the parameters of a semiempirical model of the internal resistance of a polymer electrolyte membrane fuel cell. Journal of Power Sources, 381, 84-93. doi:10.1016/j.jpowsour.2018.01.093

Liu, H., George, M. G., Ge, N., Muirhead, D., Shrestha, P., Lee, J., … Bazylak, A. (2018). Microporous Layer Degradation in Polymer Electrolyte Membrane Fuel Cells. Journal of The Electrochemical Society, 165(6), F3271-F3280. doi:10.1149/2.0291806jes

Orazem M. E. Tribollet B. , Electrochemical Impedance Spectroscopy, John Wiley & Sons, Hoboken (2008).

Lasia A. , Electrochemical Impedance Spectroscopy and its applications, Springer, London (2014).

Barsoukov E. Macdonald J. R. , Impedance Spectroscopy. Theory, experiment and applications, John Wiley & Sons, New Jersey (2005).

Choi, J.-H., Park, J.-S., & Moon, S.-H. (2002). Direct Measurement of Concentration Distribution within the Boundary Layer of an Ion-Exchange Membrane. Journal of Colloid and Interface Science, 251(2), 311-317. doi:10.1006/jcis.2002.8407

Macdonald, D. D., Sikora, E., & Engelhardt, G. (1998). Characterizing electrochemical systems in the frequency domain. Electrochimica Acta, 43(1-2), 87-107. doi:10.1016/s0013-4686(97)00238-7

Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2014). Hydrogen crossover and internal short-circuit currents experimental characterization and modelling in a proton exchange membrane fuel cell. International Journal of Hydrogen Energy, 39(25), 13206-13216. doi:10.1016/j.ijhydene.2014.06.157

Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2015). Statistical Analysis of the Effect of the Temperature and Inlet Humidities on the Parameters of a PEMFC Model. Fuel Cells, 15(3), 479-493. doi:10.1002/fuce.201400163

Hirschorn, B., Tribollet, B., & Orazem, M. E. (2008). On Selection of the Perturbation Amplitude Required to Avoid Nonlinear Effects in Impedance Measurements. Israel Journal of Chemistry, 48(3-4), 133-142. doi:10.1560/ijc.48.3-4.133

Victoria, S. N., & Ramanathan, S. (2011). Effect of potential drifts and ac amplitude on the electrochemical impedance spectra. Electrochimica Acta, 56(5), 2606-2615. doi:10.1016/j.electacta.2010.12.007

Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2016). Harmonic analysis based method for linearity assessment and noise quantification in electrochemical impedance spectroscopy measurements: Theoretical formulation and experimental validation for Tafelian systems. Electrochimica Acta, 211, 1076-1091. doi:10.1016/j.electacta.2016.06.133

Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2017). Harmonic Analysis Based Method for Perturbation Amplitude Optimization for EIS Measurements. Journal of The Electrochemical Society, 164(13), H918-H924. doi:10.1149/2.1451713jes

Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2016). Optimization of the Perturbation Amplitude for Impedance Measurements in a Commercial PEM Fuel Cell Using Total Harmonic Distortion. Fuel Cells, 16(4), 469-479. doi:10.1002/fuce.201500141

Gode, P., Jaouen, F., Lindbergh, G., Lundblad, A., & Sundholm, G. (2003). Influence of the composition on the structure and electrochemical characteristics of the PEFC cathode. Electrochimica Acta, 48(28), 4175-4187. doi:10.1016/s0013-4686(03)00603-0

Yuan, X., Sun, J. C., Wang, H., & Zhang, J. (2006). AC impedance diagnosis of a 500W PEM fuel cell stack. Journal of Power Sources, 161(2), 929-937. doi:10.1016/j.jpowsour.2006.07.020

Fernández Pulido, Y., Blanco, C., Anseán, D., García, V. M., Ferrero, F., & Valledor, M. (2017). Determination of suitable parameters for battery analysis by Electrochemical Impedance Spectroscopy. Measurement, 106, 1-11. doi:10.1016/j.measurement.2017.04.022

Fasmin, F., & Srinivasan, R. (2015). Detection of nonlinearities in electrochemical impedance spectra by Kramers–Kronig Transforms. Journal of Solid State Electrochemistry, 19(6), 1833-1847. doi:10.1007/s10008-015-2824-9

Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2015). Montecarlo based quantitative Kramers–Kronig test for PEMFC impedance spectrum validation. International Journal of Hydrogen Energy, 40(34), 11279-11293. doi:10.1016/j.ijhydene.2015.03.135

Agarwal, P. (1995). Application of Measurement Models to Impedance Spectroscopy. Journal of The Electrochemical Society, 142(12), 4159. doi:10.1149/1.2048479

Boukamp, B. A. (1995). A Linear Kronig-Kramers Transform Test for Immittance Data Validation. Journal of The Electrochemical Society, 142(6), 1885. doi:10.1149/1.2044210

BOUKAMP, B., & ROSSMACDONALD, J. (1994). Alternatives to Kronig-Kramers transformation and testing, and estimation of distributions. Solid State Ionics, 74(1-2), 85-101. doi:10.1016/0167-2738(94)90440-5

Orazem, M. E., & Tribollet, B. (2008). An integrated approach to electrochemical impedance spectroscopy. Electrochimica Acta, 53(25), 7360-7366. doi:10.1016/j.electacta.2007.10.075

Shukla, P. K., Orazem, M. E., & Crisalle, O. D. (2004). Validation of the measurement model concept for error structure identification. Electrochimica Acta, 49(17-18), 2881-2889. doi:10.1016/j.electacta.2004.01.047

Orazem, M. E. (2004). A systematic approach toward error structure identification for impedance spectroscopy. Journal of Electroanalytical Chemistry, 572(2), 317-327. doi:10.1016/j.jelechem.2003.11.059

Orazem, M. E., Shukla, P., & Membrino, M. A. (2002). Extension of the measurement model approach for deconvolution of underlying distributions for impedance measurements. Electrochimica Acta, 47(13-14), 2027-2034. doi:10.1016/s0013-4686(02)00065-8

Agarwal, P., Orazem, M. E., & Garcia-Rubio, L. H. (1996). The influence of error structure on interpretation of impedance spectra. Electrochimica Acta, 41(7-8), 1017-1022. doi:10.1016/0013-4686(95)00433-5

Orazem, M. E. (1996). Application of Measurement Models to Electrohydrodynamic Impedance Spectroscopy. Journal of The Electrochemical Society, 143(3), 948. doi:10.1149/1.1836564

Agarwal, P. (1995). Application of Measurement Models to Impedance Spectroscopy. Journal of The Electrochemical Society, 142(12), 4149. doi:10.1149/1.2048478

Agarwal, P. (1992). Measurement Models for Electrochemical Impedance Spectroscopy. Journal of The Electrochemical Society, 139(7), 1917. doi:10.1149/1.2069522

Orazem, M. E., Esteban, J. M., & Moghissi, O. C. (1991). Practical Applications of the Kramers-Kronig Relations. CORROSION, 47(4), 248-259. doi:10.5006/1.3585252

Urquidi-Macdonald, M., Real, S., & Macdonald, D. D. (1990). Applications of Kramers—Kronig transforms in the analysis of electrochemical impedance data—III. Stability and linearity. Electrochimica Acta, 35(10), 1559-1566. doi:10.1016/0013-4686(90)80010-l

Hirschorn, B., & Orazem, M. E. (2009). On the Sensitivity of the Kramers–Kronig Relations to Nonlinear Effects in Impedance Measurements. Journal of The Electrochemical Society, 156(10), C345. doi:10.1149/1.3190160

Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2016). Application of a Montecarlo based quantitative Kramers-Kronig test for linearity assessment of EIS measurements. Electrochimica Acta, 209, 254-268. doi:10.1016/j.electacta.2016.04.131

Lai, W. (2010). Fourier analysis of complex impedance (amplitude and phase) in nonlinear systems: A case study of diodes. Electrochimica Acta, 55(19), 5511-5518. doi:10.1016/j.electacta.2010.04.016

Montella C. Diard J. P. , Nonlinear Impedance of Tafelian Electrochemical Systems, Wolfram Demonstrations Project, 2014, http://demonstrations.wolfram. com/NonlinearImpedanceOfTafelianElectrochemicalSystems/.

Montella, C. (2012). Combined effects of Tafel kinetics and Ohmic potential drop on the nonlinear responses of electrochemical systems to low-frequency sinusoidal perturbation of electrode potential – New approach using the Lambert W-function. Journal of Electroanalytical Chemistry, 672, 17-27. doi:10.1016/j.jelechem.2012.03.003

Diard, J.-P., Le Gorrec, B., & Montella, C. (1997). Non-linear impedance for a two-step electrode reaction with an intermediate adsorbed species. Electrochimica Acta, 42(7), 1053-1072. doi:10.1016/s0013-4686(96)00206-x

Diard, J.-P., Le Gorrec, B., & Montella, C. (1997). Deviation from the polarization resistance due to non-linearity I - theoretical formulation. Journal of Electroanalytical Chemistry, 432(1-2), 27-39. doi:10.1016/s0022-0728(97)00213-1

Diard, J.-P., Le Gorrec, B., & Montella, C. (1997). Deviation of the polarization resistance due to non-linearity II. Application to electrochemical reactions. Journal of Electroanalytical Chemistry, 432(1-2), 41-52. doi:10.1016/s0022-0728(97)00234-9

Diard, J.-P., Le Gorrec, B., & Montella, C. (1997). Deviation of the polarization resistance due to non-linearity. III—Polarization resistance determination from non-linear impedance measurements. Journal of Electroanalytical Chemistry, 432(1-2), 53-62. doi:10.1016/s0022-0728(97)00233-7

Diard, J.-P., Le Gorrec, B., & Montella, C. (1994). Impedance measurement errors due to non-linearities—I. Low frequency impedance measurements. Electrochimica Acta, 39(4), 539-546. doi:10.1016/0013-4686(94)80098-7

Diard, J.-P., Le Gorrec, B., & Montella, C. (1994). Theoretical formulation of the odd harmonic test criterion for EIS measurements. Journal of Electroanalytical Chemistry, 377(1-2), 61-73. doi:10.1016/0022-0728(94)03624-1

Smulko, J., & Darowicki, K. (2003). Nonlinearity of electrochemical noise caused by pitting corrosion. Journal of Electroanalytical Chemistry, 545, 59-63. doi:10.1016/s0022-0728(03)00106-2

Darowicki, K. (1997). Linearization in impedance measurements. Electrochimica Acta, 42(12), 1781-1788. doi:10.1016/s0013-4686(96)00377-5

Darowicki, K. (1995). The amplitude analysis of impedance spectra. Electrochimica Acta, 40(4), 439-445. doi:10.1016/0013-4686(94)00303-i

Darowicki, K. (1995). Frequency dispersion of harmonic components of the current of an electrode process. Journal of Electroanalytical Chemistry, 394(1-2), 81-86. doi:10.1016/0022-0728(95)04065-v

Van Gheem, E., Pintelon, R., Hubin, A., Schoukens, J., Verboven, P., Blajiev, O., & Vereecken, J. (2006). Electrochemical impedance spectroscopy in the presence of non-linear distortions and non-stationary behaviour. Electrochimica Acta, 51(8-9), 1443-1452. doi:10.1016/j.electacta.2005.02.096

Van Gheem, E., Pintelon, R., Vereecken, J., Schoukens, J., Hubin, A., Verboven, P., & Blajiev, O. (2004). Electrochemical impedance spectroscopy in the presence of non-linear distortions and non-stationary behaviour. Electrochimica Acta, 49(26), 4753-4762. doi:10.1016/j.electacta.2004.05.039

Pintelon, R., Louarroudi, E., & Lataire, J. (2015). Nonparametric time-variant frequency response function estimates using arbitrary excitations. Automatica, 51, 308-317. doi:10.1016/j.automatica.2014.10.088

Pintelon, R., Louarroudi, E., & Lataire, J. (2013). Detecting and Quantifying the Nonlinear and Time-Variant Effects in FRF Measurements Using Periodic Excitations. IEEE Transactions on Instrumentation and Measurement, 62(12), 3361-3373. doi:10.1109/tim.2013.2267457

Popkirov, G. S., & Schindler, R. N. (1995). Effect of sample nonlinearity on the performance of time domain electrochemical impedance spectroscopy. Electrochimica Acta, 40(15), 2511-2517. doi:10.1016/0013-4686(95)00075-p

Popkirov, G. S., & Schindler, R. N. (1993). Optimization of the perturbation signal for electrochemical impedance spectroscopy in the time domain. Review of Scientific Instruments, 64(11), 3111-3115. doi:10.1063/1.1144316

Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2015). Total harmonic distortion based method for linearity assessment in electrochemical systems in the context of EIS. Electrochimica Acta, 186, 598-612. doi:10.1016/j.electacta.2015.10.152

On the definition of total harmonic distortion and its effect on measurement interpretation. (2005). IEEE Transactions on Power Delivery, 20(1), 526-528. doi:10.1109/tpwrd.2004.839744

Mao, Q., & Krewer, U. (2013). Total harmonic distortion analysis of oxygen reduction reaction in proton exchange membrane fuel cells. Electrochimica Acta, 103, 188-198. doi:10.1016/j.electacta.2013.03.194

Mao, Q., & Krewer, U. (2012). Sensing methanol concentration in direct methanol fuel cell with total harmonic distortion: Theory and application. Electrochimica Acta, 68, 60-68. doi:10.1016/j.electacta.2012.02.018

Mao, Q., Krewer, U., & Hanke-Rauschenbach, R. (2010). Total harmonic distortion analysis for direct methanol fuel cell anode. Electrochemistry Communications, 12(11), 1517-1519. doi:10.1016/j.elecom.2010.08.022

Thomas, S., Lee, S. C., Sahu, A. K., & Park, S. (2014). Online health monitoring of a fuel cell using total harmonic distortion analysis. International Journal of Hydrogen Energy, 39(9), 4558-4565. doi:10.1016/j.ijhydene.2013.12.180

Garcia-Antón J. Igual-Muñoz A. Guiñon J. L. Pérez-Herranz V. Herraiz-Cardona I. Ortega E. M. , Horizontal cell for electro-optical analysis of electrochemical processes, ES patent P-2000002526, October 2000.

Herraiz-Cardona I. , Desarrollo de nuevos materiales de electrodo para la obtención de hidrógeno a partir de la electrolisis alcalina del agua, PhD Tesis, Valencia, Universitat Politècnica de València (2012).

Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2015). Optimization of the electrochemical impedance spectroscopy measurement parameters for PEM fuel cell spectrum determination. Electrochimica Acta, 174, 1290-1298. doi:10.1016/j.electacta.2015.06.106

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem