- -

Augmented reality application assessment for disseminating rock art

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Augmented reality application assessment for disseminating rock art

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Blanco-Pons, Silvia es_ES
dc.contributor.author Carrión-Ruiz, Berta es_ES
dc.contributor.author Lerma, José Luis es_ES
dc.date.accessioned 2019-09-05T20:04:17Z
dc.date.available 2019-09-05T20:04:17Z
dc.date.issued 2018 es_ES
dc.identifier.issn 1380-7501 es_ES
dc.identifier.uri http://hdl.handle.net/10251/125098
dc.description.abstract [EN] Currently, marker-based tracking is the most used method to develop augmented reality (AR) applications (apps). However, this method cannot be applied in some complex and outdoor settings such as prehistoric rock art sites owing to the fact that the usage of markers is restricted on site. Thus, natural feature tracking methods have to be used. There is a wide range of libraries to develop AR apps based on natural feature tracking. In this paper, a comparative study of Vuforia and ARToolKit libraries is carried out, analysing factors such as distance, occlusion and lighting conditions that affect user experience in both indoor and outdoor environments, and eventually the app developer. Our analysis confirms that Vuforia¿s user experience indoor is better, faster and flicker-free whether the images are properly enhanced, but it does not work properly on site. Therefore, the development of AR apps for complex outdoor environments such as rock art sites should be performed with ARToolKit. es_ES
dc.description.sponsorship The authors gratefully acknowledge the support from the Spanish Ministerio de Economia y Competitividad to the project HAR2014-59873-R. Similarly, the authors want to express their gratitude to the General Directorate of Culture and Heritage, Conselleria d'Educacio, Investigacio, Cultura i Esport, Generalitat Valenciana for letting us access and carry out research at the archaeological site. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Multimedia Tools and Applications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Archaeology es_ES
dc.subject Augmented reality (AR) es_ES
dc.subject Mobile application (app) es_ES
dc.subject Markerless tracking es_ES
dc.subject ARToolKit es_ES
dc.subject Vuforia es_ES
dc.subject.classification INGENIERIA CARTOGRAFICA, GEODESIA Y FOTOGRAMETRIA es_ES
dc.title Augmented reality application assessment for disseminating rock art es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11042-018-6609-x es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//HAR2014-59873-R/ES/ANALISIS ESPECTROFOTOMETRICO Y CALIBRACION DE CAMARAS APLICADOS AL ESTUDIOS DEL ARTE RUPESTRE/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Cartográfica Geodesia y Fotogrametría - Departament d'Enginyeria Cartogràfica, Geodèsia i Fotogrametria es_ES
dc.description.bibliographicCitation Blanco-Pons, S.; Carrión-Ruiz, B.; Lerma, JL. (2018). Augmented reality application assessment for disseminating rock art. Multimedia Tools and Applications. 78(8):10265-10286. https://doi.org/10.1007/s11042-018-6609-x es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11042-018-6609-x es_ES
dc.description.upvformatpinicio 10265 es_ES
dc.description.upvformatpfin 10286 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 78 es_ES
dc.description.issue 8 es_ES
dc.relation.pasarela S\371593 es_ES
dc.contributor.funder Ministerio de Economía y Empresa es_ES
dc.description.references Alahi A., Ortiz R., Vandergheynst P (2012) FREAK: fast retina keypoint. Comput Vis Pattern Recognit 510–517 . doi: https://doi.org/10.1109/CVPR.2012.6247715 es_ES
dc.description.references Amin D, Govilkar S (2015) Comparative study of augmented reality Sdk’S. Int J Comput Sci Appl 5:11–26. https://doi.org/10.1227/01.NEU.0000297044.82035.57 es_ES
dc.description.references ARCore ARCore - Google Developer | ARCore | Google Developers. https://developers.google.com/ar/ . Accessed 26 Jun 2018 es_ES
dc.description.references ARKit ARKit - Apple Developer. https://developer.apple.com/arkit/ . Accessed 26 Jun 2018 es_ES
dc.description.references ARToolkit (2017) ARToolkit. https://archive.artoolkit.org/ . Accessed 2 Oct 2017 es_ES
dc.description.references ARToolkit (2017) About. https://artoolkit.org/about-artoolkit . Accessed 11 Apr 2017 es_ES
dc.description.references ARToolkit (2017) Documentation. https://artoolkit.org/documentation/ . Accessed 12 Apr 2017 es_ES
dc.description.references ArUco ArUco: A minimal library for Augmented Reality applications based on OpenCV | Aplicaciones de la Visión Artificial. https://www.uco.es/investiga/grupos/ava/node/26 . Accessed 19 Apr 2018 es_ES
dc.description.references Azuma R (1997) A survey of augmented reality. Presence Teleoperators Virt Environ 6:355–385 . doi: 10.1.1.30.4999 es_ES
dc.description.references Azuma R, Baillot Y, Feiner S et al (2001) Recent advances in augmented reality. Ieee Comput Graph Appl 34–47. doi: https://doi.org/10.4061/2011/908468 es_ES
dc.description.references Blanco-Novoa O, Fernandez-Carames TM, Fraga-Lamas P, Vilar-Montesinos M (2018) A practical evaluation of commercial industrial augmented reality systems in an industry 4.0 shipyard. IEEE Access 6:1–1. https://doi.org/10.1109/ACCESS.2018.2802699 es_ES
dc.description.references Blanco-Pons S, Carrión-Ruiz B, Lerma JL (2016) Review of augmented reality and virtual reality techniques in rock art. Proc 8th Int Congress Archaeol Comput Graph Cult Herit Innov ‘ARQUEOLÓGICA 2.0L: 176–183 es_ES
dc.description.references Brancati N, Caggianese G, Frucci M et al (2017) Experiencing touchless interaction with augmented content on wearable head-mounted displays in cultural heritage applications. Pers Ubiquitous Comput 21:203–217. https://doi.org/10.1007/s00779-016-0987-8 es_ES
dc.description.references Cagalaban G, Kim S (2010) Multiple object tracking in unprepared environments using combined feature for augmented reality applications. Springer, Berlin, Heidelberg es_ES
dc.description.references Camera-Calibration Camera Calibration App for Android [ARToolkit]. https://archive.artoolkit.org/documentation/doku.php?id=4_Android:android_camera_calibration . Accessed 16 Oct 2017 es_ES
dc.description.references Carmigniani J, Furht B, Anisetti M et al (2011) Augmented reality technologies, systems and applications. Multimed Tools Appl 51:341–377. https://doi.org/10.1007/s11042-010-0660-6 es_ES
dc.description.references Carrión-Ruiz B, Blanco-Pons S, Lerma JL (2016) Digital image analysis of the visible region through simulation of rock art paintings. Proc 8th Int Congress Archaeol Comput Graph, Cult Heritage Innov ‘ARQUEOLÓGICA 2.0.’: 169–175 es_ES
dc.description.references Chen CY, Chang BR, Sen HP (2014) Multimedia augmented reality information system for museum guidance. Pers Ubiquitous Comput 18:315–322. https://doi.org/10.1007/s00779-013-0647-1 es_ES
dc.description.references CRYENGINE CRYENGINE | The complete solution for next generation game development by Crytek. https://www.cryengine.com/ . Accessed 7 Jun 2017 es_ES
dc.description.references Domingo I, Carrión B, Blanco S, Lerma JL (2015) Evaluating conventional and advanced visible image enhancement solutions to produce digital tracings at el Carche rock art shelter. Digit Appl Archaeol Cult Herit 2:79–88. https://doi.org/10.1016/j.daach.2015.01.001 es_ES
dc.description.references Dos Santos AB, Dourado JB, Bezerra A (2016) ARToolkit and Qualcomm Vuforia: An Analytical Collation. Proc - 18th Symp Virt Augment Real SVR 2016:229–233. https://doi.org/10.1109/SVR.2016.46 es_ES
dc.description.references DroidAR (2017) DroidAR by bitstars. https://bitstars.github.io/droidar/ . Accessed 10 Dec 2017 es_ES
dc.description.references Engine U (2017) Unreal Engine. https://www.unrealengine.com/ . Accessed 10 Oct 2017 es_ES
dc.description.references Fiala M (2005) ARTag, a fiducial marker system using digital techniques. Proc IEEE Comput Soc Conf Comput Vis Pattern Recogn 2:590–596. https://doi.org/10.1109/CVPR.2005.74 es_ES
dc.description.references Fischer J, Eichler M, Bartz D, Straßer W (2007) A hybrid tracking method for surgical augmented reality. Comput Graph 31:39–52. https://doi.org/10.1016/j.cag.2006.09.007 es_ES
dc.description.references González C, Vallejo D, Albusac J, Castro J (2011) Realidad Aumentada. Un enfoque práctico con ARToolKit y Blender. 2–120 es_ES
dc.description.references Gutierrez JM, Molinero MA, Soto-Martín O, Medina CR (2015) Augmented reality technology spreads information about historical graffiti in temple of Debod. Procedia Comput Sci 75:390–397. https://doi.org/10.1016/j.procs.2015.12.262 es_ES
dc.description.references Haladová ZB, Szemzö R, Kovačovský T, Žižka J (2015) Utilizing Multispectral Scanning and Augmented Reality for Enhancement and Visualization of the Wooden Sculpture Restoration Process. Procedia Comput Sci 67:340–347. https://doi.org/10.1016/j.procs.2015.09.278 es_ES
dc.description.references Jamali SS, Shiratuddin MF, Wong KW, Oskam CL (2015) Utilising mobile-augmented reality for learning human anatomy. Procedia - Soc Behav Sci 197:659–668. https://doi.org/10.1016/j.sbspro.2015.07.054 es_ES
dc.description.references Khan D, Ullah S, Rabbi I (2015) Factors affecting the design and tracking of ARToolKit markers. Comput Stand Interf 41:56–66. https://doi.org/10.1016/j.csi.2015.02.006 es_ES
dc.description.references Khan D, Ullah S, Yan D et al (2018) Robust tracking through the design of high quality fiducial markers: an optimization tool for ARToolKit. IEEE Access 4:22421–22433. https://doi.org/10.1109/ACCESS.2018.2801028 es_ES
dc.description.references Kim SL, Suk HJ, Kang JH, et al (2014) Using unity 3D to facilitate mobile augmented reality game development. Internet things (WF-IoT), 2014 IEEE World Forum 21–26 . doi: https://doi.org/10.1109/WF-IoT.2014.6803110 es_ES
dc.description.references Kounavis CD, Kasimati AE, Zamani ED (2012) Enhancing the tourism experience through mobile augmented reality: challenges and prospects. Int J Eng Bus Manag 4:1–6. https://doi.org/10.5772/51644 es_ES
dc.description.references La Delfa GC, Monteleone S, Catania V et al (2016) Performance analysis of visualmarkers for indoor navigation systems. Front Inf Technol Electron Eng 17:730–740. https://doi.org/10.1631/FITEE.1500324 es_ES
dc.description.references Liu S, Ge S, Yu H (2016) Research on Robustness recognition algorithms in augmented reality. 3rd Int Conf Inf Sci Control Eng: 547–552. doi: https://doi.org/10.1109/ICISCE.2016.123 es_ES
dc.description.references Lowe DG (2004) Distinctive image features from scale invariant keypoints. Int J Comput Vis 60:91–11020042. https://doi.org/10.1023/B:VISI.0000029664.99615.94 es_ES
dc.description.references Lytridis C, Tsinakos A, Kazanidis I (2018) ARTutor—an augmented reality platform for interactive distance learning. Educ Sci 8:6. https://doi.org/10.3390/educsci8010006 es_ES
dc.description.references Marchand E, Uchiyama H, Spindler F et al (2016) Pose estimation for augmented reality : a hands-on survey. IEEE Trans Vis Comput Graph 22:2633–2651. https://doi.org/10.1109/TVCG.2015.2513408 es_ES
dc.description.references Martínez R, Villaverde V (2002) La cova dels cavalls en el Barranc de la Valltorta es_ES
dc.description.references Marto AGR, Sousa AA, de Gonçalves A (2017) DinofelisAR demo augmented reality based on natural features. 12a Conferência Ibérica Sist e Tecnol Informação, Lisboa 64:852–861. https://doi.org/10.1016/j.procs.2015.08.638 es_ES
dc.description.references Moreels P, Perona P (2007) Evaluation of feature detectors and descriptors based on 3D objects. Int J Comput Vis 73:263–284. https://doi.org/10.1007/s11263-006-9967-1 es_ES
dc.description.references Pierdicca R, Frontoni E, Zingaretti P et al (2015) Making visible the invisible. augmented reality visualization for 3D reconstructions of archaeological sites. Augment Virt Real Sec Int Conf AVR 2015 9254:25–37. https://doi.org/10.1007/978-3-319-22888-4 es_ES
dc.description.references Rabbi I, Ullah S, Javed M, Zen K (2014) Analysis of ARToolKit fiducial markers attributes for robust tracking. 1st Int Conf Recent Trends Inf Commun Technol Anal 281–290 es_ES
dc.description.references Radkowski R, Oliver J (2013) Natural feature tracking augmented reality for on-site assembly assistance systems. In: Shumaker R (ed) Virtual, Augmented and Mixed Reality. Systems and Applications. VAMR 2013. Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, pp 281–290 es_ES
dc.description.references Ridel B, Reuter P, Laviole J et al (2014) The revealing flashlight: interactive spatial augmented reality for detail exploration of cultural heritage artifacts. J Comput Cult Herit 7(6):1–6:18. https://doi.org/10.1145/2611376 es_ES
dc.description.references Seo J, Shim J, Choi JH, et al (2011) Enhancing marker-based AR technology. Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) 6773 LNCS:97–104 . doi: https://doi.org/10.1007/978-3-642-22021-0_12 es_ES
dc.description.references Seo J, Shim J, Choi JH et al (2011) Enhancing marker-based AR technology. In: International conference on virtual and mixed reality. virtual and mixed reality - new trends. Springer, Berlin, Heidelberg, pp 97–104 es_ES
dc.description.references Siltanen S (2015) Diminished reality for augmented reality interior design. Vis Comput 33:1–16. https://doi.org/10.1007/s00371-015-1174-z es_ES
dc.description.references Sörös G, Seichter H, Rautek P, Gröller E (2011) Augmented visualization with natural feature tracking. Proc 10th Int Conf Mob Ubiquitous Multimed 4–12. doi: https://doi.org/10.1145/2107596.2107597 es_ES
dc.description.references Uchiyama H, Marchand E (2012) Object detection and pose tracking for augmented reality: recent approaches. 18th Korea-Japan Jt Work Front Comput Vis 1–8 es_ES
dc.description.references Unity Unity. https://unity3d.com/es . Accessed 12 Oct 2017 es_ES
dc.description.references Vuforia (2017) Vuforia. https://www.vuforia.com/ . Accessed 2 Oct 2017 es_ES
dc.description.references Vuforia (2017) Vuforia-VuMark. https://library.vuforia.com/articles/Training/VuMark . Accessed 4 Apr 2017 es_ES
dc.description.references Vuforia (2017) Image targets. https://library.vuforia.com/articles/Training/Image-Target-Guide . Accessed 11 Apr 2017 es_ES
dc.description.references Wang H, Qin J, Zhang F (2015) A new interaction method for augmented reality based on ARToolKit. 2015 8th Int Congr Image Signal Process 578–583. doi: https://doi.org/10.1109/CISP.2015.7407945 es_ES
dc.description.references Wang G, Wang B, Zhong F et al (2015) Global optimal searching for textureless 3D object tracking. Vis Comput 31:979–988. https://doi.org/10.1007/s00371-015-1098-7 es_ES
dc.description.references Wu S, Oerlemans A, Bakker EM, Lew MS (2017) A comprehensive evaluation of local detectors and descriptors. Signal Process Image Commun 59:150–167. https://doi.org/10.1016/J.IMAGE.2017.06.010 es_ES
dc.description.references Xu Y, Wu Y, Zhou H, View M (2018) Multi-scale Voxel Hashing and Efficient 3D Representation for Mobile Augmented Reality. Cvpr 1618–1625 . doi: https://doi.org/10.1109/CVPRW.2018.00200 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem