Mostrar el registro sencillo del ítem
dc.contributor.author | Willemsen, A. | es_ES |
dc.contributor.author | Carrasco Jiménez, José Luis | es_ES |
dc.contributor.author | Elena Fito, Santiago Fco. | es_ES |
dc.contributor.author | Zwart, Mark Peter | es_ES |
dc.date.accessioned | 2019-09-05T20:05:03Z | |
dc.date.available | 2019-09-05T20:05:03Z | |
dc.date.issued | 2018 | es_ES |
dc.identifier.issn | 0018-067X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/125115 | |
dc.description.abstract | [EN] Horizontal gene transfer is common among viruses, while they also have highly compact genomes and tend to lose artificial genomic insertions rapidly. Understanding the stability of genomic insertions in viral genomes is therefore relevant for explaining and predicting their evolutionary patterns. Here, we revisit a large body of experimental research on a plant RNA virus, tobacco etch potyvirus (TEV), to identify the patterns underlying the stability of a range of homologous and heterologous insertions in the viral genome. We obtained a wide range of estimates for the recombination rate-the rate at which deletions removing the insertion occur-and these appeared to be independent of the type of insertion and its location. Of the factors we considered, recombination rate was the best predictor of insertion stability, although we could not identify the specific sequence characteristics that would help predict insertion instability. We also considered experimentally the possibility that functional insertions lead to higher mutational robustness through increased redundancy. However, our observations suggest that both functional and non-functional increases in genome size decreased the mutational robustness. Our results therefore demonstrate the importance of recombination rates for predicting the long-term stability and evolution of viral RNA genomes and suggest that there are unexpected drawbacks to increases in genome size for mutational robustness. | es_ES |
dc.description.sponsorship | This work was supported by the John Templeton Foundation (grant 22371), the European Commission seventh Framework Program EvoEvo Project (grant ICT-610427), and Spain Agencia Estatal de Investigacion-FEDER (grant BFU2015-65037-P) to S.F.E. The opinions expressed in this publication are those of the authors and do not necessarily reflect the views of the John Templeton Foundation. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Nature Publishing Group | es_ES |
dc.relation.ispartof | Heredity | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.title | Going, going, gone: predicting the fate of genomic insertions in plant RNA viruses | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1038/s41437-018-0086-x | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BFU2015-65037-P/ES/EVOLUCION DE VIRUS EN HUESPEDES CON SUSCEPTIBILIDAD VARIABLE: CONSECUENCIAS EN EFICACIA Y VIRULENCIA DE CAMBIOS EN LAS REDES INTERACTOMICAS DE PROTEINAS VIRUS-HUESPED/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/610427/EU/Evolution of Evolution/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/JTF//JTF22371/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.description.bibliographicCitation | Willemsen, A.; Carrasco Jiménez, JL.; Elena Fito, SF.; Zwart, MP. (2018). Going, going, gone: predicting the fate of genomic insertions in plant RNA viruses. Heredity. 121(5):499-509. https://doi.org/10.1038/s41437-018-0086-x | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1038/s41437-018-0086-x | es_ES |
dc.description.upvformatpinicio | 499 | es_ES |
dc.description.upvformatpfin | 509 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 121 | es_ES |
dc.description.issue | 5 | es_ES |
dc.identifier.pmid | 29743566 | |
dc.identifier.pmcid | PMC6180052 | |
dc.relation.pasarela | S\382645 | es_ES |
dc.contributor.funder | John Templeton Foundation | es_ES |
dc.contributor.funder | Ministerio de Economía, Industria y Competitividad | es_ES |
dc.contributor.funder | European Commission | |
dc.contributor.funder | European Regional Development Fund | |
dc.description.references | Belshaw R, Gardner A, Rambaut A, Pybus OG (2008) Pacing a small cage: mutation and RNA viruses. Trends Ecol Evol 23:188–193 | es_ES |
dc.description.references | Belshaw R, Pybus OG, Rambaut A (2007) The evolution of genome compression and genomic novelty in RNA viruses. Genome Res 17:1496–1504 | es_ES |
dc.description.references | Bobay LM, Ochman H (2017) The evolution of bacterial genome architecture. Front Genet 8:72 | es_ES |
dc.description.references | Carter JJ, Daugherty MD, Qi X, Bheda-Malge A, Wipf GC, Robinson K et al. (2013) Identification of an overprinting gene in Merkel cell polyomavirus provides evolutionary insight into the birth of viral genes. Proc Natl Acad Sci USA 110:12744–12749 | es_ES |
dc.description.references | Cervera H, Lalić J, Elena SF (2016) Efficient escape from local optima in a highly rugged fitness landscape by evolving RNA virus populations. Proc R Soc B 283:20160984 | es_ES |
dc.description.references | Chung BN, Canto T, Palukaitis P (2007) Stability of recombinant plant viruses containing genes of unrelated plant viruses. J Gen Virol 88:1347–1355 | es_ES |
dc.description.references | Crow KD, Wagner GP (2006) What is the role of genome duplication in the evolution of complexity and diversity? Mol Biol Evol 23:887–892 | es_ES |
dc.description.references | De Visser JAGM, Hermisson J, Wagner GP, Ancel Meyers L, Bagheri-Chaichian H, Blanchard JL, Chao L, Cheverud JM, Elena SF, Fontana W, Gibson G, Hansen TF, Krakauer DC, Lewontin RC, Ofria C, Rice SH, von Dassow G, Wagner A, Whitlock MC (2003) Evolution and detection of genetic robustness. Evolution 57:1959–1972 | es_ES |
dc.description.references | De Visser JAGM, Krug J (2014) Empirical fitness landscapes and the predictability of evolution. Nat Rev Genet 15:480–490 | es_ES |
dc.description.references | Dolja VV, Herndon KL, Pirone TP, Carrington JC, Gus P (1993) Spontaneous mutagenesis of a plant potyvirus genome after insertion of a foreign gene J Virol 67:5968–5975 | es_ES |
dc.description.references | Filée J (2009) Lateral gene transfer, lineage-specific gene expansion and the evolution of nucleo cytoplasmic large DNA viruses. J Invertebr Pathol 101:169–171 | es_ES |
dc.description.references | Frensing T (2015) Defective interfering viruses and their impact on vaccines and viral vectors. Biotechnol J 10:681–689 | es_ES |
dc.description.references | Kim MJ, Kao C (2001) Factors regulating template switch in vitro by viral RNA-dependent RNA polymerases: implications for RNA-RNA recombination. Proc Natl Acad Sci USA 98:4792–4977 | es_ES |
dc.description.references | Keeling PJ, Palmer JD (2008) Horizontal gene transfer in eukaryotic evolution. Nat Rev Genet 9:605–618 | es_ES |
dc.description.references | Koonin EV, Makarova KS, Aravind L (2001) Horizontal gene transfer in prokaryotes: quantification and classification. Annu Rev Microbiol 55:709–742 | es_ES |
dc.description.references | Krupovic M, Koonin EV (2014) Evolution of eukaryotic single-stranded DNA viruses of the Bidnaviridae family from genes of four other groups of widely different viruses. Sci Rep 4:5347 | es_ES |
dc.description.references | Lässig M, Mustonen V, Walczak AM (2017) Predicting evolution. Nat Ecol Evol 1:77 | es_ES |
dc.description.references | Lauring AS, Acevedo A, Cooper SB, Andino R (2012) Codon usage determines the mutational robustness, evolutionary capacity, and virulence of an RNA virus. Cell Host Microbe 12:623–632 | es_ES |
dc.description.references | Luksza M, Lässig M (2014) A predictive fitness model for influenza. Nature 507:57–61 | es_ES |
dc.description.references | Lynch M (2006) Streamlining and simplification of microbial genome architecture. Annu Rev Microbiol 60:327–349 | es_ES |
dc.description.references | Majer E, Daròs JA, Zwart MP (2013) Stability and fitness impact of the visually discernible Rosea1 marker in the Tobacco etch virus genome. Viruses 5:2153–2168 | es_ES |
dc.description.references | Monroe SS, Schlesinger S (1983) RNAs from two independently isolated defective interfering particles of Sindbis virus contain a cellular tRNA sequence at their 5’ ends. Proc Natl Acad Sci USA 80:3279–3283 | es_ES |
dc.description.references | Montville R, Froissart R, Remold SK, Tenaillon O, Turner PE (2005) Evolution of mutational robustness in an RNA virus. PLOS Biol 3:1939–1945 | es_ES |
dc.description.references | Moratorio G, Henningsson R, Barbezange C, Carrau L, Bordería AV, Blanc H, Beaucourt S, Poirier EZ, Vallet T, Boussier J, Mounce BC, Fontes M, Vignuzzi M (2017) Attenuation of RNA viruses by redirecting their evolution in sequence space. Nat Microbiol 2:17088 | es_ES |
dc.description.references | Nagy PD, Simon AE (1997) New insights into the mechanisms of RNA recombination. Virology 235:1–9 | es_ES |
dc.description.references | Naseeb S, Ames RM, Delneri D, Lovell SC (2017) Rapid functional and evolutionary changes follow gene duplication in yeast. Proc R Soc B 284:20171393 | es_ES |
dc.description.references | Pál C, Papp B, Lercher MJ (2005) Adaptive evolution of bacterial metabolic networks by horizontal gene transfer. Nat Genet 37:1372–1375 | es_ES |
dc.description.references | Pijlman GP, van den Born E, Martens DE, Vlak JM (2001) Autographa californica baculoviruses with large genomic deletions are rapidly generated in infected insect cells. Virology 283:132–138 | es_ES |
dc.description.references | R Core Team (2016) R: A language and environment for statistical computing. | es_ES |
dc.description.references | Schenk MF, De Visser JAGM (2013) Predicting the evolution of antibiotic resistance. BMC Biol 11:14 | es_ES |
dc.description.references | Shapka N, Nagy PD (2004) The AU-rich RNA recombination hot spot sequence of Brome mosaic virus is functional in tombusviruses: implications for the mechanism of RNA recombination. J Virol 78:2288–2300 | es_ES |
dc.description.references | Song D, Cho WK, Park SH, Jo Y, Kim KH (2013) Evolution of and horizontal gene transfer in the Endornavirus genus. PLOS One 8:e64270 | es_ES |
dc.description.references | Stoltzfus A, McCandlish DM (2017) Mutational biases influence parallel adaptation. Mol Biol Evol 34:2163–2172 | es_ES |
dc.description.references | Tatineni S, Robertson CJ, Garnsey SM, Dawson WO (2011) A plant virus evolved by acquiring multiple nonconserved genes to extend its host range. Proc Natl Acad Sci USA 108:17366–17371 | es_ES |
dc.description.references | Tromas N, Elena SF (2010) The rate and spectrum of spontaneous mutations in a plant RNA virus. Genetics 185:983–989 | es_ES |
dc.description.references | Tromas N, Zwart MP, Forment J, Elena SF (2014a) Shrinkage of genome size in a plant RNA virus upon transfer of an essential viral gene into the host genome. Genome Biol Evol 6:538–550 | es_ES |
dc.description.references | Tromas N, Zwart MP, Poulain M, Elena SF (2014b) Estimation of the in vivo recombination rate for a plant RNA virus. J Gen Virol 95:724–732 | es_ES |
dc.description.references | Van Nimwegen E (2006) Influenza escapes immunity along neutral networks. Science 314:1884–1886 | es_ES |
dc.description.references | Willemsen A, Zwart MP, Ambrós S, Carrasco JL, Elena SF (2017) 2b or not 2b: experimental evolution of functional exogenous sequences in a plant RNA virus. Genome Biol Evol 9:297–310 | es_ES |
dc.description.references | Willemsen A, Zwart MP, Higueras P, Sardanyés J, Elena SF (2016a) Predicting the stability of homologous gene duplications in a plant RNA. virus 8:3065–3082 | es_ES |
dc.description.references | Willemsen A, Zwart MP, Tromas N, Majer E, Daròs JA, Elena SF (2016b) Multiple barriers to the evolution of alternative gene orders in a positive-strand RNA virus. Genetics 202:1503–1521 | es_ES |
dc.description.references | Yue J, Hu X, Sun H, Yang Y, Huang J (2012) Widespread impact of horizontal gene transfer on plant colonization of land. Nat Commun 3:1152–1159 | es_ES |
dc.description.references | Zhang J (2003) Evolution by gene duplication: an update. Trends Ecol Evol 18:292–298 | es_ES |
dc.description.references | Zwart MP, Willemsen A, Daròs JA, Elena SF (2014) Experimental evolution of pseudogenization and gene loss in a plant RNA virus. Mol Biol Evol 31:121–134 | es_ES |