- -

Optimization Models to Support Decision-Making in Collaborative Networks: A Review

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Optimization Models to Support Decision-Making in Collaborative Networks: A Review

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Andres, B. es_ES
dc.contributor.author Poler, R. es_ES
dc.contributor.author Saari, Leila es_ES
dc.contributor.author Arana, J. es_ES
dc.contributor.author Benaches, J.V. es_ES
dc.contributor.author Salazar, J. es_ES
dc.date.accessioned 2019-09-05T20:05:12Z
dc.date.available 2019-09-05T20:05:12Z
dc.date.issued 2018 es_ES
dc.identifier.issn 2198-0772 es_ES
dc.identifier.uri http://hdl.handle.net/10251/125121
dc.description.abstract [EN] Enterprises, especially SMEs, are increasingly aware of belonging to Collaborative Networks (CN), due to the competitive advantages associated to deal with markets globalization and turbulence. The participation in CN involves enterprises to perform collaborative planning along all the processes established with the CN partners. Nevertheless, the access of SMEs to optimisation tools, for dealing with collaborative planning, is currently limited. To solve this concern, novel optimisation approaches have to be designed in order to improve the inte- grated planning in CN. In order to deal with this problem, this paper proposes a baseline to identify current enterprise needs and literature solutions in the replenishment, production and delivery collaborative planning, as a part of the H2020 Cloud Collaborative Manufacturing Networks (C2NET) research project. The main gaps found between the literature reviewed and the enterprises¿ needs are presented and discussed. es_ES
dc.description.sponsorship The research leading to these results is in the frame of the “Cloud Collaborative Manufacturing Networks” (C2NET) project, which has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 636,909.
dc.language Inglés es_ES
dc.publisher Springer es_ES
dc.relation.ispartof Lecture Notes in Management and Industrial Engineering es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Collaborative networks es_ES
dc.subject Collaborative processes es_ES
dc.subject Production planning es_ES
dc.subject Industrial optimisation needs es_ES
dc.subject.classification ORGANIZACION DE EMPRESAS es_ES
dc.title Optimization Models to Support Decision-Making in Collaborative Networks: A Review es_ES
dc.type Artículo es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.1007/978-3-319-58409-6_28 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/636909/EU/Cloud Collaborative Manufacturing Networks (C2NET)/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Organización de Empresas - Departament d'Organització d'Empreses es_ES
dc.description.bibliographicCitation Andres, B.; Poler, R.; Saari, L.; Arana, J.; Benaches, J.; Salazar, J. (2018). Optimization Models to Support Decision-Making in Collaborative Networks: A Review. Lecture Notes in Management and Industrial Engineering. 249-258. https://doi.org/10.1007/978-3-319-58409-6_28 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename International Joint Conference - CIO-ICIEOM-IISE-AIM (IJC2016), XX Congreso de Ingeniería de Organización , XXII International Conference on Industrial Engineering and Operations Management , International IISE Conference 2016 , and International es_ES
dc.relation.conferencedate Julio 13-15,2016 es_ES
dc.relation.conferenceplace San Sebastián, Spain es_ES
dc.relation.publisherversion http://doi.org/10.1007/978-3-319-58409-6_28 es_ES
dc.description.upvformatpinicio 249 es_ES
dc.description.upvformatpfin 258 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela S\342949 es_ES
dc.contributor.funder European Commission es_ES
dc.description.references Alemany MME, Boj JJ, Mula J, Lario FC (2010) Mathematical programming model for centralised master planning in ceramic tile supply chains. Int J Prod Res 48(17):5053–5074 es_ES
dc.description.references Billington PJ, McClain JO, Thomas LJ (1983) Mathematical programming approaches to capacity-constrained MRP systems: review, formulation and problem reduction. Manage Sci 29(10):1126–1141 es_ES
dc.description.references Chen CL, Lee WC (2004) Multi-objective optimization of multi-echelon supply chain networks with uncertain product demand and prices. Comput Chem Eng 28:1131–1144 es_ES
dc.description.references Clark AR (2003) Optimization approximations for capacity constrained material requirements planning. Int J Prod Econ 84(2):115–131 es_ES
dc.description.references Escudero LF (1994) CMIT, capacitated multi-level implosion tool. Eur J Oper Res 76(3):511–528 es_ES
dc.description.references Franz C, Hällgren EC, Koberstein A (2014) Resequencing orders on mixed-model assembly lines: heuristic approaches to minimise the number of overload situations. Int J Prod Res 52(19):5823–5840 es_ES
dc.description.references Gansterer M (2015). Aggregate planning and forecasting in make-to-order production systems. Int J Prod Econ es_ES
dc.description.references Giglio D, Minciardi R (2003) Modelling and optimization of multi-site production systems in supply chain networks. In: Proceedings IEEE international conference on systems, man and cybernetics, vol. 3, pp 2678–2683 es_ES
dc.description.references Gupta D, Magnusson T (2005) The capacitated lot-sizing and scheduling problem with sequence-dependent setup costs and setup times. Comput Oper Res 32(4):727–747 es_ES
dc.description.references Hernández JE, Mula J, Poler R, Lyons AC (2014) Collaborative planning in multi-tier supply chains supported by a negotiation-based mechanism and multi-agent system. Group Decis Negot 23(2):235–269 es_ES
dc.description.references Karimi IA, McDonald CM (1997) Planning and scheduling of parallel semicontinuous processes. 2. Short-term scheduling. Ind Eng Chem Res 36(7):2701–2714 es_ES
dc.description.references Lim SJ, Jeong KS, Kim MW, Park (2005) A simulation approach for production-distribution planning with consideration given to replenishment policies. Int J Adv Manuf Technol 27, pp 593–603 es_ES
dc.description.references McDonald CM, Karimi IA (1997) Planning and scheduling of parallel semicontinuous processes. 1. Production planning. Ind Eng Chem Res 36(7):2691–2700 es_ES
dc.description.references Mula J, Poler R, Garcia-Sabater JP, Lario FC (2006) Models for production planning under uncertainty: a review es_ES
dc.description.references Mula J, Peidro D, Poler R (2010) The effectiveness of a fuzzy mathematical programming approach for supply chain production planning with fuzzy demand. Int J Prod Econ 128:136–143 es_ES
dc.description.references Noori S, Feylizadeh MR, Bagherpour M, Zorriassatine F, Parkin RM (2008) Optimization of material requirement planning by fuzzy multi-objective linear programming. Proce Inst Mech Eng—Part B—Eng Manuf 222(7):887–900 es_ES
dc.description.references Rota K, Thierry C, Bel G (1997) Capacity-constrained MRP system: a mathematical programming model integrating firm orders, forecasts and suppliers. Universite Toulouse II Le Mirail, Departament d’Automatique es_ES
dc.description.references Sabri EH, Beamon BM (2000) A multi-objective approach to simultaneous strategic and operational planning in supply chain design. Omega 28(5):581–598 es_ES
dc.description.references Supply Chain Council (2012) Supply chain operations reference model (SCOR). Supply chain operations management. Retrieved from: http://www.apics.org/sites/apics-supply-chain-council/frameworks/scor es_ES
dc.description.references Yenisey MM (2006) A flow-network approach for equilibrium of material requirements planning. Int J Prod Econ 102(2):317–332 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem