Mostrar el registro sencillo del ítem
dc.contributor.author | Andres, B. | es_ES |
dc.contributor.author | Poler, R. | es_ES |
dc.contributor.author | Saari, Leila | es_ES |
dc.contributor.author | Arana, J. | es_ES |
dc.contributor.author | Benaches, J.V. | es_ES |
dc.contributor.author | Salazar, J. | es_ES |
dc.date.accessioned | 2019-09-05T20:05:12Z | |
dc.date.available | 2019-09-05T20:05:12Z | |
dc.date.issued | 2018 | es_ES |
dc.identifier.issn | 2198-0772 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/125121 | |
dc.description.abstract | [EN] Enterprises, especially SMEs, are increasingly aware of belonging to Collaborative Networks (CN), due to the competitive advantages associated to deal with markets globalization and turbulence. The participation in CN involves enterprises to perform collaborative planning along all the processes established with the CN partners. Nevertheless, the access of SMEs to optimisation tools, for dealing with collaborative planning, is currently limited. To solve this concern, novel optimisation approaches have to be designed in order to improve the inte- grated planning in CN. In order to deal with this problem, this paper proposes a baseline to identify current enterprise needs and literature solutions in the replenishment, production and delivery collaborative planning, as a part of the H2020 Cloud Collaborative Manufacturing Networks (C2NET) research project. The main gaps found between the literature reviewed and the enterprises¿ needs are presented and discussed. | es_ES |
dc.description.sponsorship | The research leading to these results is in the frame of the “Cloud Collaborative Manufacturing Networks” (C2NET) project, which has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 636,909. | |
dc.language | Inglés | es_ES |
dc.publisher | Springer | es_ES |
dc.relation.ispartof | Lecture Notes in Management and Industrial Engineering | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Collaborative networks | es_ES |
dc.subject | Collaborative processes | es_ES |
dc.subject | Production planning | es_ES |
dc.subject | Industrial optimisation needs | es_ES |
dc.subject.classification | ORGANIZACION DE EMPRESAS | es_ES |
dc.title | Optimization Models to Support Decision-Making in Collaborative Networks: A Review | es_ES |
dc.type | Artículo | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.identifier.doi | 10.1007/978-3-319-58409-6_28 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/636909/EU/Cloud Collaborative Manufacturing Networks (C2NET)/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Organización de Empresas - Departament d'Organització d'Empreses | es_ES |
dc.description.bibliographicCitation | Andres, B.; Poler, R.; Saari, L.; Arana, J.; Benaches, J.; Salazar, J. (2018). Optimization Models to Support Decision-Making in Collaborative Networks: A Review. Lecture Notes in Management and Industrial Engineering. 249-258. https://doi.org/10.1007/978-3-319-58409-6_28 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | International Joint Conference - CIO-ICIEOM-IISE-AIM (IJC2016), XX Congreso de Ingeniería de Organización , XXII International Conference on Industrial Engineering and Operations Management , International IISE Conference 2016 , and International | es_ES |
dc.relation.conferencedate | Julio 13-15,2016 | es_ES |
dc.relation.conferenceplace | San Sebastián, Spain | es_ES |
dc.relation.publisherversion | http://doi.org/10.1007/978-3-319-58409-6_28 | es_ES |
dc.description.upvformatpinicio | 249 | es_ES |
dc.description.upvformatpfin | 258 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.pasarela | S\342949 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.description.references | Alemany MME, Boj JJ, Mula J, Lario FC (2010) Mathematical programming model for centralised master planning in ceramic tile supply chains. Int J Prod Res 48(17):5053–5074 | es_ES |
dc.description.references | Billington PJ, McClain JO, Thomas LJ (1983) Mathematical programming approaches to capacity-constrained MRP systems: review, formulation and problem reduction. Manage Sci 29(10):1126–1141 | es_ES |
dc.description.references | Chen CL, Lee WC (2004) Multi-objective optimization of multi-echelon supply chain networks with uncertain product demand and prices. Comput Chem Eng 28:1131–1144 | es_ES |
dc.description.references | Clark AR (2003) Optimization approximations for capacity constrained material requirements planning. Int J Prod Econ 84(2):115–131 | es_ES |
dc.description.references | Escudero LF (1994) CMIT, capacitated multi-level implosion tool. Eur J Oper Res 76(3):511–528 | es_ES |
dc.description.references | Franz C, Hällgren EC, Koberstein A (2014) Resequencing orders on mixed-model assembly lines: heuristic approaches to minimise the number of overload situations. Int J Prod Res 52(19):5823–5840 | es_ES |
dc.description.references | Gansterer M (2015). Aggregate planning and forecasting in make-to-order production systems. Int J Prod Econ | es_ES |
dc.description.references | Giglio D, Minciardi R (2003) Modelling and optimization of multi-site production systems in supply chain networks. In: Proceedings IEEE international conference on systems, man and cybernetics, vol. 3, pp 2678–2683 | es_ES |
dc.description.references | Gupta D, Magnusson T (2005) The capacitated lot-sizing and scheduling problem with sequence-dependent setup costs and setup times. Comput Oper Res 32(4):727–747 | es_ES |
dc.description.references | Hernández JE, Mula J, Poler R, Lyons AC (2014) Collaborative planning in multi-tier supply chains supported by a negotiation-based mechanism and multi-agent system. Group Decis Negot 23(2):235–269 | es_ES |
dc.description.references | Karimi IA, McDonald CM (1997) Planning and scheduling of parallel semicontinuous processes. 2. Short-term scheduling. Ind Eng Chem Res 36(7):2701–2714 | es_ES |
dc.description.references | Lim SJ, Jeong KS, Kim MW, Park (2005) A simulation approach for production-distribution planning with consideration given to replenishment policies. Int J Adv Manuf Technol 27, pp 593–603 | es_ES |
dc.description.references | McDonald CM, Karimi IA (1997) Planning and scheduling of parallel semicontinuous processes. 1. Production planning. Ind Eng Chem Res 36(7):2691–2700 | es_ES |
dc.description.references | Mula J, Poler R, Garcia-Sabater JP, Lario FC (2006) Models for production planning under uncertainty: a review | es_ES |
dc.description.references | Mula J, Peidro D, Poler R (2010) The effectiveness of a fuzzy mathematical programming approach for supply chain production planning with fuzzy demand. Int J Prod Econ 128:136–143 | es_ES |
dc.description.references | Noori S, Feylizadeh MR, Bagherpour M, Zorriassatine F, Parkin RM (2008) Optimization of material requirement planning by fuzzy multi-objective linear programming. Proce Inst Mech Eng—Part B—Eng Manuf 222(7):887–900 | es_ES |
dc.description.references | Rota K, Thierry C, Bel G (1997) Capacity-constrained MRP system: a mathematical programming model integrating firm orders, forecasts and suppliers. Universite Toulouse II Le Mirail, Departament d’Automatique | es_ES |
dc.description.references | Sabri EH, Beamon BM (2000) A multi-objective approach to simultaneous strategic and operational planning in supply chain design. Omega 28(5):581–598 | es_ES |
dc.description.references | Supply Chain Council (2012) Supply chain operations reference model (SCOR). Supply chain operations management. Retrieved from: http://www.apics.org/sites/apics-supply-chain-council/frameworks/scor | es_ES |
dc.description.references | Yenisey MM (2006) A flow-network approach for equilibrium of material requirements planning. Int J Prod Econ 102(2):317–332 | es_ES |