- -

Orius laevigatus strengthens its role as a biological control agent by inducing plant defenses

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Orius laevigatus strengthens its role as a biological control agent by inducing plant defenses

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bouagga, S. es_ES
dc.contributor.author Urbaneja Garcia, Alberto es_ES
dc.contributor.author Rambla Nebot, Jose Luis es_ES
dc.contributor.author Granell Richart, Antonio es_ES
dc.contributor.author Pérez-Hedo, Meritxell es_ES
dc.date.accessioned 2019-09-05T20:05:23Z
dc.date.available 2019-09-05T20:05:23Z
dc.date.issued 2018 es_ES
dc.identifier.issn 1612-4758 es_ES
dc.identifier.uri http://hdl.handle.net/10251/125127
dc.description.abstract [EN] Orius laevigatus is a generalist predator that is widely used in augmentative strategies against the key pest of sweet pepper, Frankliniella occidentalis. Despite being a zoophytophagous predator, the phytophagous behavior of O. laevigatus has not been previously explored in depth nor has the impact of phytophagy on plant physiology. Here, the hierarchical significance of O. laevigatus feeding on sweet pepper is compared with other behaviors. O. laevigatus spends the majority of its time (38%) feeding on apical meristems and apical fresh leaves, which were also preferred residence locations. Here, the phytophagous feeding behavior of O. laevigatus on sweet pepper is shown to trigger defensive responses in the plant. These O. laevigatus plant-induced defenses are then shown to contribute to the repellence or attraction of pests or natural enemies, respectively. Specifically, O. laevigatus-punctured sweet pepper plants induce repellency for the whitefly Bemisia tabaci and the thrips species F. occidentalis. In contrast, the whitefly parasitoid Encarsia formosa was significantly attracted to O. laevigatus-punctured plants. The plant responses to O. laevigatus punctures include the release of an altered blend of volatiles and activation of the jasmonic acid and salicylic acid signalling pathways. These results highlight an interesting facet to the biology of O. laevigatus, in which the ability of the predator to induce defensive responses in sweet pepper plants may serve to improve the biological control of both thrips and whiteflies. es_ES
dc.description.sponsorship The research leading to these results was partially funded by the Spanish Ministry of Economy and Competitiveness (AGL2014-55616-C3) and the Conselleria d'Agricultura, Pesca i Alimentacio de la Generalitat Valenciana. The authors thank Dr. Javier Calvo (KOPPERT BS, Spain) for supplying the insects, Dr. Pablo Bielza (Universidad Politecnica de Cartagena, Spain) for thrips colonies, Dimitrios Afentoulis, Zoi Thanou and Konstantinos Birmpilis (Erasmus + from Agricultural University of Athens) for providing support in the behavior experiments and Alice Mockford (University of Worcester) and two anonymous reviewers for their constructive review of this manuscript. MP-H was the recipient of a postdoctoral fellowship from the MEC (Juan de la Cierva program-FPDI-2013-17968) and SB was the recipient of a grant from Russell IPM Ltd. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Journal of Pest Science es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Minute pirate bug es_ES
dc.subject Behavior es_ES
dc.subject Plant response es_ES
dc.subject Herbivore-induced plant volatiles es_ES
dc.subject Sweet pepper es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.title Orius laevigatus strengthens its role as a biological control agent by inducing plant defenses es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10340-017-0886-4 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2014-55616-C3-1-R/ES/MEJORA DE LA RESILIENCIA DEL CULTIVO MEDIANTE EL AUMENTO DE LA RESPUESTA DE DEFENSA DE LA PLANTA Y ADAPTACION AL CAMBIO CLIMATICO/
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//FPDI-2013-17968/ES/FPDI-2013-17968/
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Bouagga, S.; Urbaneja Garcia, A.; Rambla Nebot, JL.; Granell Richart, A.; Pérez-Hedo, M. (2018). Orius laevigatus strengthens its role as a biological control agent by inducing plant defenses. Journal of Pest Science. 91(1):55-64. https://doi.org/10.1007/s10340-017-0886-4 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1007/s10340-017-0886-4 es_ES
dc.description.upvformatpinicio 55 es_ES
dc.description.upvformatpfin 64 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 91 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\357638 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad
dc.description.references Ardanuy A, Albajes R, Turlings TC (2016) Innate and learned prey-searching behavior in a generalist predator. J Chem Ecol 42:497–507 es_ES
dc.description.references Armer CA, Wiedenmann RN, Bush DR (1998) Plant feeding site selection on soybean by the facultatively phytophagous predator Orius insidiosus. Entomol Exp Appl 86:109–118 es_ES
dc.description.references Arnó J, Roig J, Riudavets J (2008) Evaluation of Orius majusculus and O. laevigatus as predators of Bemisia tabaci and estimation of their prey preference. Biol Control 44:1–6 es_ES
dc.description.references Calvo J, Bolckmans K, Belda JE (2009) Development of a biological control-based integrated pest management method for Bemisia tabaci for protected sweet pepper crops. Entomol Exp Appl 133:9–18 es_ES
dc.description.references Chambers R, Long S, Helyer NL (1993) Effectiveness of Orius laevigatus (Hem, Anthocoridae) for the control of Frankliniella occidentalis on cucumber and pepper in the UK. Biocontrol Sci Technol 3:295–307 es_ES
dc.description.references Cocuzza G, De Clercq P, Veire M, de Cock A, Degheele D, Vacante V (1997) Reproduction of Orius laevigatus and Orius albidipennis on pollen and Ephestia kuehniella eggs. Entomol Exp Appl 82:101–104 es_ES
dc.description.references De Puysseleyr V, Hofte M, De Clercq P (2011) Ovipositing Orius laevigatus increase tomato resistance against Frankliniella occidentalis feeding by inducing the wound response. Arth-Plant Int 5:71–80 es_ES
dc.description.references Evans E, Dixon AFG (1986) Cues for oviposition by ladybird beetles (Coccinellidae): response to aphids. J Anim Ecol 55:1027–1034 es_ES
dc.description.references Frescata C, Mexia A (1996) Biological control of thrips (Thysanoptera) by Orius laevigatus (Heteroptera: Anthocoridae) in organically grown strawberries. Biol Agric Hortic 13:141–148 es_ES
dc.description.references Fritshe ME, Tamó M (2000) Influence of thrips prey species on the life-history and behaviour of Orius albidipennis. Entomol Exp Appl 96:111–118 es_ES
dc.description.references Gerling D, Alomar O, Arnó J (2001) Biological control of Bemisia tabaci using predators and parasitoids. Crop Prot 20:779–799 es_ES
dc.description.references Gill R, Gupta K, Taggar GK, Taggar MS (2010) Role of oxidative enzymes in plant defenses against herbivory. Acta Phytopathol Entomol Hung 45:277–290 es_ES
dc.description.references Hemptinne J, Dixon AFG, Coffin J (1992) Attack strategy of ladybird beetles (Coccinellidae): factors shaping their numercial response. Oecol 90:238–245 es_ES
dc.description.references Hernández LM, Stonedahl GM (1999) A review of the economically important species of the genus Orius (Heteroptera: anthocoridae) in East Africa. J Nat Hist 33:543–568 es_ES
dc.description.references Jonathan GL, Fergen J (2006) The oviposition behavior of the predator Orius insidiosus: acceptability and preference for different plants. Biocontrol 51:217–227 es_ES
dc.description.references Kessler A, Baldwin IT (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Science 291:2141–2144 es_ES
dc.description.references Kessler A, Baldwin IT (2002) Plant responses to insect herbivory: the emerging molecular analysis. Annu Rev Plant Biol 53:299–328 es_ES
dc.description.references Kigathi RN, Unsicker SB, Reichelt M, Kesselmeier J, Gershenzon J, Weisser WW (2009) Emission of volatile organic compounds after herbivory from Trifolium pratense (L.) Under laboratory and field conditions. J Chem Ecol 35:1335–1348 es_ES
dc.description.references Lee DH, Nyrop JP, Sanderson JP (2014) Non-consumptive effects of the predatory beetle Delphastus catalinae (Coleoptera: coccinellidae) on habitat use patterns of adult whitefly Bemisia argentifolii (Hemiptera: Aleyrodidae). Appl Entomol Zool 49:599–606 es_ES
dc.description.references Lundgren JG, Fergen JK, Riedell WE (2008) Influence of plant anatomy on oviposition and reproductive success of the omnivorous bug Orius insidiosus. Anim Behav 75:1495–1502 es_ES
dc.description.references McCormick AC, Irmisch S, Reiecke A, Boeckler AG, Veit D, Reichelt M, Köllner TG, Hansson BS, Gershenzon J, Unsicker SB (2014) Herbivore-induced volatile emission in black poplar: regulation and role in attracting herbivore enemies. Plant Cell Environ 37:1909–1923 es_ES
dc.description.references Nakashima Y, Hirose Y (2002) Sex differences in foraging behaviour and oviposition site preference in an insect predator, Orius sauteri. Entomol Exp Appl 106:79–86 es_ES
dc.description.references Naselli M, Urbaneja A, Siscaro G, Jaques JA, Zappalà L, Flors V, Pérez-Hedo M (2016) Stage-related defense response induction in tomato plants by Nesidiocoris tenuis. Int J Mol Sci 17:1210 es_ES
dc.description.references Ninkovic V, Feng Y, Olsson U, Pettersson J (2013) Ladybird footprints induce aphid avoidance behavior. Biol Control 65:63–71 es_ES
dc.description.references Nomikou M, Janssen A, Sabelis MW (2003) Herbivore host plant selection: whitefly learns to avoid host plants that harbor predators of her offspring. Oecologia 136:484–488 es_ES
dc.description.references Pappas M, Steppuhn A, Geuss D, Topalidou N, Zografou A, Sabelis MW, Broufas GD (2015) Beyond Predation: the Zoophytophagous predator Macrolophus pygmaeus induces tomato resistance against spider mites. PLoS ONE 10(5):e0127251 es_ES
dc.description.references Pappas M, Steppuhn A, Broufas GD (2016) The role of phytophagy by predators in shaping plant interactions with their pests. Commun Integr Biol 9(2):e1145320 es_ES
dc.description.references Pérez-Hedo M, Urbaneja A (2015) Prospects for predatory mirid bugs as biocontrol agents of aphids in sweet peppers. J Pest Sci 88:65–73 es_ES
dc.description.references Pérez-Hedo M, Urbaneja-Bernat P, Jaques JA, Flors V, Urbaneja A (2015a) Defensive plant responses induced by Nesidiocoris tenuis (Hemiptera: miridae) on tomato plants. J Pest Sci 88:543–554 es_ES
dc.description.references Pérez-Hedo M, Bouagga S, Jaques JA, Flors V, Urbaneja A (2015b) Tomato plant responses to feeding behavior of three zoophytophagous predators (Hemiptera: miridae). Biol Control 86:46–51 es_ES
dc.description.references Ponzio C, Gols R, Weldegergis BT, Dicke M (2014) Caterpillar-induced plant volatiles remain a reliable signal for foraging wasps during dual attack with a plant pathogen or non-host insect herbivore. Plant Cell Environ 37:1924–1935 es_ES
dc.description.references Riudavets J (1995) Predators of Frankliniella occidentalis (Perg.) and Thrips tabaci Lind: a review. Wag Ag Un P 95:43–87 es_ES
dc.description.references Sanchez JA, Lacasa A (2002) Modelling population dynamics of Orius laevigatus and O. albidipennis (Hemiptera: anthocoridae) to optimize their use as biological control agents of Frankliniella occidentalis (Thysanoptera: Thripidae). Bull Entomol Res 92:77–88 es_ES
dc.description.references Sanchez JA, Alcazar A, Lacasa A, Llamas A, Bielza P (2000) Integrated pest management strategies in sweet pepper plastic houses in the Southeast of Spain. IOBC/WPRS Bull 23:21–27 es_ES
dc.description.references Sendoya F, Freitas VL, Oliveira PS (2009) Egg-laying butterflies distinguish predaceous ants by sight. Am Nat 174:134–140 es_ES
dc.description.references Shivaji R, Camas A, Ankala A, Engelberth J, Tumlinson JH, Williams WP, Wilkinson JR, Luthe DS (2010) Plants on constant alert: elevated levels of jasmonic acid and jasmonate-induced transcripts in caterpillar resistant maize. J Chem Ecol 36:179–191 es_ES
dc.description.references Vacante V, Cocuzza GE, De Clercq P, Van De Veire M, Tirry L (1997) Development and survival of Orius albidipennis and O. laevigatus (Het.: anthocoridae) on various diet. Entomophaga 42:493–498 es_ES
dc.description.references van der Blom J, Ramos M, Ravensberg W (1997) Biological pest control in sweet pepper in Spain: introduction rates of predators of Frankiniella occidentalis. IOBC/WPRS Bull 20:196–202 es_ES
dc.description.references van der Blom J, Robledo A, Torres S, Sánchez JA (2009) Consequences of the wide scale implementation of biological control in greenhouse horticulture in Almeria, Spain. IOBC/WPRS Bull 49:9–13 es_ES
dc.description.references van Lenteren J, Bueno VH (2003) Augmentative biological control of arthropods in Latin America. Biocontrol 48:123–139 es_ES
dc.description.references van Lenteren JC, Bolckmans K, Köhl J, Ravensberg W, Urbaneja A (2017) Biological Control using invertebrates and microorganisms: plenty of new opportunities. BioControl In press. doi: 10.1007/s10526-017-9801-4 es_ES
dc.description.references Venzon M, Janssen A, Sabelis MW (2002) Prey preference and reproductive success of the generalist predator Orius laevigatus. Oikos 97:116–124 es_ES
dc.description.references War AB, Sharma HC, Paulraj MG, War MH, Ignacimuthu S (2011) Herbivore induced plant volatiles. Their role in plant defense for pest management. Plant Signal Behav 6:1973–1978 es_ES
dc.description.references Wasserberg G, White L, Bullard A, King J, Maxwell R (2013) Oviposition site selection in Aedes albopictus (Diptera: culicidae): are the effects of predation risk and food level independent? J Med Entomol 50:1159–1164 es_ES
dc.description.references Werner EE, Peacor SD (2003) A review of trait-mediated indirect interactions in ecological communities. Ecology 84:1083–1100 es_ES
dc.description.references Yano E, Jiang N, Hemerik L, Mochizuki M, Mitsunaga T, Shimoda T (2005) Time allocation of Orius sauteri in attacking Thrips palmi on an eggplant leaf. Entomol Exp Appl 117:177–184 es_ES
dc.description.references Zeng F, Cohen AC (2000) Demonstration of amylase from the zoophytophagous anthocorid Orius insidiosus. Arch Int Physiol Biochim 44:9–136 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem