Mostrar el registro sencillo del ítem
dc.contributor.author | Such-Miquel, Luis | es_ES |
dc.contributor.author | Canto Serrano, Irene Del | es_ES |
dc.contributor.author | Zarzoso Muñoz, Manuel | es_ES |
dc.contributor.author | Brines-Ferrando, L. | es_ES |
dc.contributor.author | Soler, C. | es_ES |
dc.contributor.author | Parra-Giraldo, G. | es_ES |
dc.contributor.author | Guill Ibáñez, Antonio | es_ES |
dc.contributor.author | Alberola, Antonio | es_ES |
dc.contributor.author | Such Belenguer, Luis | es_ES |
dc.contributor.author | Chorro, F.J. | es_ES |
dc.date.accessioned | 2019-09-05T20:05:35Z | |
dc.date.available | 2019-09-05T20:05:35Z | |
dc.date.issued | 2018 | es_ES |
dc.identifier.issn | 1530-7905 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/125131 | |
dc.description.abstract | [EN] Electromechanical coupling studies have described the intervention of nitric oxide and S-nitrosylation processes in Ca2+ release induced by stretch, with heterogeneous findings. On the other hand, ion channel function activated by stretch is influenced by nitric oxide, and concentration-dependent biphasic effects upon several cellular functions have been described. The present study uses isolated and perfused rabbit hearts to investigate the changes in mechanoelectric feedback produced by two different concentrations of the nitric oxide carrier S-nitrosoglutathione. Epicardial multielectrodes were used to record myocardial activation at baseline and during and after left ventricular free wall stretch using an intraventricular device. Three experimental series were studied: (a) control (n=10); (b) S-nitrosoglutathione 10 mu M (n=11); and (c) S-nitrosoglutathione 50 mu M (n=11). The changes in ventricular fibrillation (VF) pattern induced by stretch were analyzed and compared. S-nitrosoglutathione 10 mu M did not modify VF at baseline, but attenuated acceleration of the arrhythmia (15.6 +/- 1.7 vs. 21.3 +/- 3.8Hz; p<0.0001) and reduction of percentile 5 of the activation intervals (42 +/- 3 vs. 38 +/- 4ms; p<0.05) induced by stretch. In contrast, at baseline using the 50 mu M concentration, percentile 5 was shortened (38 +/- 6 vs. 52 +/- 10ms; p<0.005) and the complexity index increased (1.77 +/- 0.18 vs. 1.27 +/- 0.13; p<0.0001). The greatest complexity indices (1.84 +/- 0.17; p<0.05) were obtained during stretch in this series. S-nitrosoglutathione 10 mu M attenuates the effects of mechanoelectric feedback, while at a concentration of 50 mu M the drug alters the baseline VF pattern and accentuates the increase in complexity of the arrhythmia induced by myocardial stretch. | es_ES |
dc.description.sponsorship | Carlos III Health Institute/FEDER funds (Spanish Ministry of Economy and Competitiveness): Grants FIS PI12/00407, PI15/01408, PIE15/00013, and RETIC “RIC” RD12/0042/0048. Generalitat Valenciana: Grant PROMETEO FASE II 2014/037. | |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Cardiovascular Toxicology | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Nitric oxide | es_ES |
dc.subject | S-nitrosoglutathione | es_ES |
dc.subject | Myocardial stretch | es_ES |
dc.subject | Mechanoelectric feedback | es_ES |
dc.subject | Cardiac arrhythmias | es_ES |
dc.subject | Ventricular fibrillation | es_ES |
dc.subject | Cardiac mapping | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Effects of S-Nitrosoglutathione on Electrophysiological Manifestations of Mechanoelectric Feedback | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s12012-018-9463-1 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F037/ES/ESTUDIO MEDIANTE TÉCNICAS CARTOGRÁFICAS AVANZADAS DE LOS MECANISMOS BÁSICOS IMPLICADOS EN LAS ARRITMIAS MALIGNAS Y EN SU CONTROL/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CB16%2F11%2F00486/ES/ENFERMEDADES CARDIOVASCULARES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//PI12%2F00407/ES/Utilidad de la estabilización de la homeostasis del calcio intracelular en el control de los procesos fibrilatorios/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//PI15%2F01408/ES/Efectos de la inhibición de la desacetilación de las histonas en el remodelado post-infarto del sustrato arritmogénico/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//PIE15%2F00013/ES/A multidisciplinary project to advance in basic mechanisms, diagnosis, prediction, and prevention of cardiac damage in reperfused acute myocardial infarction/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//RD12%2F0042%2F0048/ES/Enfermedades cardiovasculares/ | |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.description.bibliographicCitation | Such-Miquel, L.; Canto Serrano, ID.; Zarzoso Muñoz, M.; Brines-Ferrando, L.; Soler, C.; Parra-Giraldo, G.; Guill Ibáñez, A.... (2018). Effects of S-Nitrosoglutathione on Electrophysiological Manifestations of Mechanoelectric Feedback. Cardiovascular Toxicology. 18(6):520-529. https://doi.org/10.1007/s12012-018-9463-1 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1007/s12012-018-9463-1 | es_ES |
dc.description.upvformatpinicio | 520 | es_ES |
dc.description.upvformatpfin | 529 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 18 | es_ES |
dc.description.issue | 6 | es_ES |
dc.identifier.pmid | 29868937 | |
dc.relation.pasarela | S\380048 | es_ES |
dc.contributor.funder | Instituto de Salud Carlos III | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Tamargo, J., Caballero, R., Gómez, R., & Delpón, E. (2010). Cardiac electrophysiological effects of nitric oxide. Cardiovascular Research, 87, 593–600. | es_ES |
dc.description.references | Gonzalez, D. R., Treuer, A., Sun, Q. A., Stamler, J. S., & Hare, J. M. (2009). S-nitrosylation of cardiac ion channels. Journal of Cardiovascular Pharmacology, 54, 188–195. | es_ES |
dc.description.references | Treuer, A. V., & Gonzalez, D. R. (2015). Nitric oxide synthases, S-nitrosylation and cardiovascular health: From molecular mechanisms to therapeutic opportunities. Molecular Medicine Reports, 11, 1555–1565. | es_ES |
dc.description.references | Beigi, F., Gonzalez, D. R., Minhas, K. M., Sun, Q. A., Foster, M. W., Khan, S. A., Treuer, A. V., Dulce, R. A., Harrison, R. W., Saraiva, R. M., Premer, C., Schulman, I. H., Stamler, J. S., & Hare, J. M. (2012). Dynamic denitrosylation via S-nitrosoglutathione reductase regulates cardiovascular function. Proceedings of the National Academy of Sciences of the United States of America, 109, 4314–4319. | es_ES |
dc.description.references | Broniowska, K. A., Diers, A. R., & Hogg, N. (2013). S-nitrosoglutathione. Biochimica et Biophysica Acta, 1830, 3173–3181. | es_ES |
dc.description.references | Zaman, K., Palmer, L. A., Doctor, A., Hunt, J. F., & Gaston, B. (2004). Concentration-dependent effects of endogenous S-nitrosoglutathione on gene regulation by specificity proteins Sp3 and Sp1. The Biochemical Journal, 380, 67–74. | es_ES |
dc.description.references | Janse, M. J., Coronel, R., Wilms-Schopman, F. J. G., & de Groot, J. R. (2003). Mechanical effects on arrhythmogenesis: From pipette to patient. Progress in Biophysics and Molecular Biology, 82, 187–195. | es_ES |
dc.description.references | Quinn, T. A., & Kohl, P. (2016). Rabbit models of cardiac mechano-electric and mechano-mechanical coupling. Progress in Biophysics and Molecular Biology, 121, 110–122. | es_ES |
dc.description.references | Vila-Petroff, M., Kim, S. H., Pepe, S., Dessy, C., Marbán, E., Balligand, J. L., & Sollott, S. J. (2001). Endogenous nitric oxide mechanisms mediate the stretch-dependency of Ca2+ release in cardiomyocytes. Nature Cell Biology, 3, 867–873. | es_ES |
dc.description.references | Leite-Moreira, A. M., Neves, J. S., Almeida-Coelho, J., Neiva-Sousa, M., & Leite-Moreira, A. F. (2016). On the study of the role of NO-mediated pathways in the myocardial response to acute stretch. Nitric Oxide: Biology and Chemistry, 53, 1–3. | es_ES |
dc.description.references | Peyronnet, R., Nerbonne, J. M., & Kohl, P. (2016). Cardiac mechano-gated ion channels and arrhythmias. Circulation Research 118, 311–329. | es_ES |
dc.description.references | Fischmeister, R., Castro, L., Abi-Gerges, A., Rochais, F., & Vandecasteele, G. (2005). Species- and tissue-dependent effects of NO and cyclic GMP on cardiac ion channels. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 142, 136–143. | es_ES |
dc.description.references | Kazanski, V. E., Kamkin, A. G., Makarenko, E. Y., Lysenko, N. N., Sutiagin, P. V., Bo, T., & Kiseleva, I. S. (2010). Role of nitric oxide in activity control of mechanically gated ionic channels in cardiomyocytes: NO-donor study. Bulletin of Experimental Biology and Medicine, 150, 1–5. | es_ES |
dc.description.references | Dyachenko, V., Rueckschloss, U., & Isenberg, G. (2009). Modulation of cardiac mechanosensitive ion channels involves superoxide, nitric oxide and peroxynitrite. Cell Calcium, 45, 55–64. | es_ES |
dc.description.references | Chorro, F. J., Trapero, I., Guerrero, J., Such, L. M., Canoves, J., Mainar, L., Ferrero, A., Blasco, E., Sanchis, J., Millet, J., Tormos, A., Bodí, V., & Alberola, A. (2005). Modification of ventricular fibrillation activation patterns induced by local stretching. Journal of Cardiovascular Electrophysiology, 16, 1087–1096. | es_ES |
dc.description.references | Chorro, F. J., Trapero, I., Such-Miquel, L., Pelechano, F., Mainar, L., Cánoves, J., Tormos, A., Alberola, A., Hove-Madsen, L., Cinca, J., & Such, L. (2009). Pharmacological modifications of the stretch-induced effects on ventricular fibrillation in perfused rabbit-hearts. American Journal of Physiology Heart and Circulatory Physiology, 297, H1860–H1869. | es_ES |
dc.description.references | Brines, L., Such-Miquel, L., Gallego, D., Trapero, I., Del Canto, I., Zarzoso, M., Soler, C., Pelechano, F., Cánoves, J., Alberola, A., Such, L., & Chorro, F. J. (2012). Modifications of mechanoelectric feedback induced by 2,3-butanedione monoxime and blebbistatin in Langendorff-perfused rabbit hearts. Acta Physiologica, 206, 29–41. | es_ES |
dc.description.references | Chorro, F. J., del Canto, I., Brines, L., Such-Miquel, L., Calvo, C., Soler, C., Zarzoso, M., Trapero, I., Tormos, Á, & Such, L. (2015). Experimental study of the effects of EIPA, losartan and BQ-123 on electrophysiological changes induced by myocardial stretch. Revista Espanola de Cardiologia, 68, 1101–1110. | es_ES |
dc.description.references | Chorro, F. J., del Canto, I., Brines, L., Such-Miquel, L., Calvo, C., Soler, C., Parra, G., Zarzoso, M., Trapero, I., Tormos, A., Alberola, A., & Such, L. (2015). Ranolazine attenuates the electrophysiological effects of myocardial stretch in Langendorff-perfused rabbit hearts. Cardiovascular Drugs and Therapy, 29, 231–241. | es_ES |
dc.description.references | Kelly, R. A., Balligand, J. L., & Smith, T. W. (1996). Nitric oxide and cardiac function. Circulation Research, 79, 363–380. | es_ES |
dc.description.references | Kojda, G., & Kottenberg, K. (1999). Regulation of basal myocardial function by NO. Cardiovascular Research, 41, 514–523. | es_ES |
dc.description.references | Massion, P. B., Feron, O., Dessy, C., & Balligand, J. L. (2003). Nitric oxide and cardiac function: Ten years after, and continuing. Circulation Research, 93, 388–398. | es_ES |
dc.description.references | Shah, A. M., & MacCarthy, P. A. (2000). Paracrine and autocrine effects of nitric oxide on myocardial function. Pharmacology & Therapeutics, 86, 49–86. | es_ES |
dc.description.references | Zhang, Y. H., Dingle, L., Hall, R., & Casadei, B. (2009). The role of nitric oxide and reactive oxygen species in the positive inotropic response to mechanical stretch in the mammalian myocardium. Biochimica et Biophysica Acta, 1787, 811–817. | es_ES |
dc.description.references | Chorro, F. J., Ibañez-Catalá, X., Trapero, I., Such-Miquel, L., Pelechano, F., Cánoves, J., Mainar, L., Tormos, A., Cerdá, J. M., Alberola, A., & Such, L. (2013). Ventricular fibrillation conduction through an isthmus of preserved myocardium between radiofrequency lesions. Pacing and Clinical Electrophysiology, 36, 286–298. | es_ES |
dc.description.references | Gaston, B., Reilly, J., Drazen, J. M., Fackler, J., Ramdev, P., Arnelle, D., Mullins, M. E., Sugarbaker, D. J., Chee, C., Singel, D. J., Loscalzo, J., & Stamler, J. (1993). Endogenous nitrogen oxides and bronchodilator S-nitrosothiols in human airways. Proceedings of the National Academy of Sciences of the United States of America, 90, 10957–10961. | es_ES |
dc.description.references | Radomski, M. W., Rees, D. D., Dutra, A., & Moncada, S. (1992). S-nitroso-glutathione inhibits platelet activation in vitro and in vivo. British Journal of Pharmacology, 107, 745–749. | es_ES |
dc.description.references | Zaman, K., McPherson, M., Vaughan, J., Hunt, J., Mendes, F., Gaston, B., & Palmer, L. A. (2001). S-nitrosoglutathione increases cystic fibrosis transmembrane regulator maturation. Biochemical and Biophysical Research Communications, 284, 65–70. | es_ES |
dc.description.references | Zaman, K., Carraro, S., Doherty, J., Henderson, E. M., Lendermon, E., Liu, L., Verghese, G., Zigler, M., Ross, M., Park, M., Palmer, L. A., Doctor, A., Stamler, J. S., & Gaston, B. (2006). S-nitrosylating agents: A novel class of compounds that increase cystic fibrosis transmembrane conductance regulator expression and maturation in epithelial cells. Molecular Pharmacology, 70, 1435–1442. | es_ES |
dc.description.references | Kaposzta, Z., Baskerville, P. A., Madge, D., Fraser, S., Martin, J. F., & Markus, H. S. (2001). L-arginine and S-nitrosoglutathione reduce embolization in humans. Circulation, 103, 2371–2375. | es_ES |
dc.description.references | Kaposzta, Z., Clifton, A., Molloy, J., Martin, J. F., & Markus, H. S. (2002). S-nitrosoglutathione reduces asymptomatic embolization after carotid angioplasty. Circulation, 106, 2057–3062. | es_ES |
dc.description.references | Everett, T. R., Wilkinson, I. B., Mahendru, A. A., McEniery, C. M., Garner, S., Goodall, A. H., & Lees, C. C. (2014). S-nitrosoglutathione improves haemodynamics in early-onset pre-eclampsia. British Journal of Clinical Pharmacology, 78, 660–669. | es_ES |
dc.description.references | Everett, T. R., Wilkinson, I. B., & Lees, C. C. (2017). Pre-eclampsia: The potential of GSNO reductase inhibitors. Current Hypertension Reports, 19, 1–7. | es_ES |
dc.description.references | Oppenheim, A., & Schafer, R. (1975). Digital signal processing. Englewood Cliffs: Prentice Hall. | es_ES |
dc.description.references | Such-Miquel, L., Chorro, F. J., Guerrero, J., Trapero, I., Brines, L., Zarzoso, M., Parra, G., Soler, C., del Canto, I., Alberola, A., & Such, L. (2013). Evaluation of the complexity of myocardial activation during ventricular fibrillation. An experimental study. Revista Espanola de Cardiologia, 66, 177–184. | es_ES |
dc.description.references | Erickson, J. R., Nichols, C. B., Uchinoumi, H., Stein, M., Bossuyt, J., & Bers, D. M. (2015). S-nitrosylation induces both autonomous activation and inhibition of calcium/calmodulin-dependent protein kinase IIδ. Journal of Biological Chemistry, 290, 25646–25656. | es_ES |
dc.description.references | Gómez, R., Caballero, R., Barana, A., Amorós, I., Calvo, E., López, J. A., Klein, H., Vaquero, M., Osuna, L., Atienza, F., Almendral, J., Pinto, A., Tamargo, J., & Delpón, E. (2009). Nitric oxide increases cardiac IK1 by nitrosylation of cysteine 76 of Kir2.1 channels. Circulation Research, 105, 383–392. | es_ES |
dc.description.references | Sun, J., Yamaguchi, N., Xu, L., Eu, J. P., Stamler, J. S., & Meissner, G. (2008). Regulation of the cardiac muscle ryanodine receptor by O2 tension and S-nitrosoglutathione. Biochemistry, 47, 13985–13990. | es_ES |
dc.description.references | Xu, L., Eu, J. P., Meissner, G., & Stamler, J. S. (1998). Activation of the cardiac calcium release channel (ryanodine receptor) by poly-S-nitrosylation. Science, 279, 234–237. | es_ES |
dc.description.references | Zahradnikova, A., Minarovic, I., Venema, R. C., & Meszaros, L. G. (1997). Inactivation of the cardiac ryanodine receptor calcium release channel by nitric oxide. Cell Calcium, 22, 447–454. | es_ES |
dc.description.references | Kirstein, M., Rivet-Bastide, M., Hatem, S., Bénardeau, A., Mercadier, J. J., & Fischmeister, R. (1995). Nitric Oxide regulates the calcium current in isolated human atrial myocytes. Journal of Clinical Investigation, 95, 794–802. | es_ES |
dc.description.references | Rivet-Bastide, M., Vandecasteele, G., Hatem, S., Verde, I., Bénardeau, A., Mercadier, J. J., & Fischmeister, R. (1997). cGMP-stimulated cyclic nucleotide phosphodiesterase regulates the basal calcium current in human atrial myocytes. Journal of Clinical Investigation, 99, 2710–2718. | es_ES |
dc.description.references | Lim, G., Venetucci, L., Eisner, D. A., & Casadei, B. (2008). Does nitric oxide modulate cardiac ryanodine receptor function? Implications for excitation–contraction coupling. Cardiovascular Research, 77, 256–264. | es_ES |
dc.description.references | Ling, L., Hui, Y., Bing, G., Xin, H., Jing, W., & Jin-Cheng, L. (2015). Nitric oxide donor, NOC7, reveals dose dependently and cGMP pathway independently biphasic effects on contractile force of isolated rat heart after global ischemia. International Journal of Clinical and Experimental Pathology, 8, 3843–3849. | es_ES |
dc.description.references | Cingolani, H. E., Ennis, I. L., Aiello, E. A., & Pérez, N. G. (2011). Role of autocrine/paracrine mechanisms in response to myocardial strain. Pflugers Archiv European Journal of Physiology, 462, 29–38. | es_ES |
dc.description.references | Youm, J. B., Han, J., Kim, N., Zhang, Y. H., Kim, E., Joo, H., Leem, C. H., Kim, S. J., Cha, K. A., Earm, Y. E., & Leem, C. H. (2006). Role of stretch-activated channels on the stretch-induced changes of rat atrial myocytes. Progress in Biophysics and Molecular Biology, 90, 186–206. | es_ES |
dc.description.references | von Lewinski, D., Stumme, B., Maier, L. S., Luers, C., Bers, D. M., & Pieske, B. (2003). Stretch-dependent slow force response in isolated rabbit myocardium is Na+ dependent. Cardiovascular Research, 57, 1052–1061. | es_ES |
dc.description.references | Calaghan, S. C., Belus, A., & White, E. (2003). Do stretch-induced changes in intracellular calcium modify the electrical activity of cardiac muscle? Progress in Biophysics and Molecular Biology, 82, 91–95. | es_ES |
dc.description.references | Zhang, Y. H., Dingle, L., Hall, R., & Casadei, B. (2009). The role of nitric oxide and reactive oxygen species in the positive inotropic response to mechanical stretch in the mammalian myocardium. Biochimica Biophysica Acta, 1787, 811–817. | es_ES |
dc.description.references | Sag, C. M., Wagner, S., & Maier, L. S. (2013). Role of oxidants on calcium and sodium movement in healthy and diseased cardiac myocytes. Free Radical Biology and Medicine, 63, 338–349. | es_ES |
dc.description.references | Janvier, N. C., & Boyett, M. R. (1996). The role of Na-Ca exchange current in the cardiac action potential. Cardiovascular Research, 32, 69–84. | es_ES |
dc.description.references | Kovács, M., Kiss, A., Gönczi, M., Miskolczi, G., Seprényl, G., Kaszaki, J., Kohr, M. J., Murphy, E., & Vegh, A. (2015). Effect of sodium nitrite on ischaemia and reperfusion-induced arrhythmias in anaesthetized dogs: Is protein S-nitrosylation involved? PLoS ONE, 10(4), e0122243 (eCollection 2015). https://doi.org/10.1371/journal.pone.0122243 . | es_ES |