- -

Effects of S-Nitrosoglutathione on Electrophysiological Manifestations of Mechanoelectric Feedback

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Effects of S-Nitrosoglutathione on Electrophysiological Manifestations of Mechanoelectric Feedback

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Such-Miquel, Luis es_ES
dc.contributor.author Canto Serrano, Irene Del es_ES
dc.contributor.author Zarzoso Muñoz, Manuel es_ES
dc.contributor.author Brines-Ferrando, L. es_ES
dc.contributor.author Soler, C. es_ES
dc.contributor.author Parra-Giraldo, G. es_ES
dc.contributor.author Guill Ibáñez, Antonio es_ES
dc.contributor.author Alberola, Antonio es_ES
dc.contributor.author Such Belenguer, Luis es_ES
dc.contributor.author Chorro, F.J. es_ES
dc.date.accessioned 2019-09-05T20:05:35Z
dc.date.available 2019-09-05T20:05:35Z
dc.date.issued 2018 es_ES
dc.identifier.issn 1530-7905 es_ES
dc.identifier.uri http://hdl.handle.net/10251/125131
dc.description.abstract [EN] Electromechanical coupling studies have described the intervention of nitric oxide and S-nitrosylation processes in Ca2+ release induced by stretch, with heterogeneous findings. On the other hand, ion channel function activated by stretch is influenced by nitric oxide, and concentration-dependent biphasic effects upon several cellular functions have been described. The present study uses isolated and perfused rabbit hearts to investigate the changes in mechanoelectric feedback produced by two different concentrations of the nitric oxide carrier S-nitrosoglutathione. Epicardial multielectrodes were used to record myocardial activation at baseline and during and after left ventricular free wall stretch using an intraventricular device. Three experimental series were studied: (a) control (n=10); (b) S-nitrosoglutathione 10 mu M (n=11); and (c) S-nitrosoglutathione 50 mu M (n=11). The changes in ventricular fibrillation (VF) pattern induced by stretch were analyzed and compared. S-nitrosoglutathione 10 mu M did not modify VF at baseline, but attenuated acceleration of the arrhythmia (15.6 +/- 1.7 vs. 21.3 +/- 3.8Hz; p<0.0001) and reduction of percentile 5 of the activation intervals (42 +/- 3 vs. 38 +/- 4ms; p<0.05) induced by stretch. In contrast, at baseline using the 50 mu M concentration, percentile 5 was shortened (38 +/- 6 vs. 52 +/- 10ms; p<0.005) and the complexity index increased (1.77 +/- 0.18 vs. 1.27 +/- 0.13; p<0.0001). The greatest complexity indices (1.84 +/- 0.17; p<0.05) were obtained during stretch in this series. S-nitrosoglutathione 10 mu M attenuates the effects of mechanoelectric feedback, while at a concentration of 50 mu M the drug alters the baseline VF pattern and accentuates the increase in complexity of the arrhythmia induced by myocardial stretch. es_ES
dc.description.sponsorship Carlos III Health Institute/FEDER funds (Spanish Ministry of Economy and Competitiveness): Grants FIS PI12/00407, PI15/01408, PIE15/00013, and RETIC “RIC” RD12/0042/0048. Generalitat Valenciana: Grant PROMETEO FASE II 2014/037.
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Cardiovascular Toxicology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Nitric oxide es_ES
dc.subject S-nitrosoglutathione es_ES
dc.subject Myocardial stretch es_ES
dc.subject Mechanoelectric feedback es_ES
dc.subject Cardiac arrhythmias es_ES
dc.subject Ventricular fibrillation es_ES
dc.subject Cardiac mapping es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Effects of S-Nitrosoglutathione on Electrophysiological Manifestations of Mechanoelectric Feedback es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s12012-018-9463-1 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F037/ES/ESTUDIO MEDIANTE TÉCNICAS CARTOGRÁFICAS AVANZADAS DE LOS MECANISMOS BÁSICOS IMPLICADOS EN LAS ARRITMIAS MALIGNAS Y EN SU CONTROL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CB16%2F11%2F00486/ES/ENFERMEDADES CARDIOVASCULARES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//PI12%2F00407/ES/Utilidad de la estabilización de la homeostasis del calcio intracelular en el control de los procesos fibrilatorios/
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//PI15%2F01408/ES/Efectos de la inhibición de la desacetilación de las histonas en el remodelado post-infarto del sustrato arritmogénico/
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//PIE15%2F00013/ES/A multidisciplinary project to advance in basic mechanisms, diagnosis, prediction, and prevention of cardiac damage in reperfused acute myocardial infarction/
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RD12%2F0042%2F0048/ES/Enfermedades cardiovasculares/
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Such-Miquel, L.; Canto Serrano, ID.; Zarzoso Muñoz, M.; Brines-Ferrando, L.; Soler, C.; Parra-Giraldo, G.; Guill Ibáñez, A.... (2018). Effects of S-Nitrosoglutathione on Electrophysiological Manifestations of Mechanoelectric Feedback. Cardiovascular Toxicology. 18(6):520-529. https://doi.org/10.1007/s12012-018-9463-1 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1007/s12012-018-9463-1 es_ES
dc.description.upvformatpinicio 520 es_ES
dc.description.upvformatpfin 529 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 18 es_ES
dc.description.issue 6 es_ES
dc.identifier.pmid 29868937
dc.relation.pasarela S\380048 es_ES
dc.contributor.funder Instituto de Salud Carlos III es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Tamargo, J., Caballero, R., Gómez, R., & Delpón, E. (2010). Cardiac electrophysiological effects of nitric oxide. Cardiovascular Research, 87, 593–600. es_ES
dc.description.references Gonzalez, D. R., Treuer, A., Sun, Q. A., Stamler, J. S., & Hare, J. M. (2009). S-nitrosylation of cardiac ion channels. Journal of Cardiovascular Pharmacology, 54, 188–195. es_ES
dc.description.references Treuer, A. V., & Gonzalez, D. R. (2015). Nitric oxide synthases, S-nitrosylation and cardiovascular health: From molecular mechanisms to therapeutic opportunities. Molecular Medicine Reports, 11, 1555–1565. es_ES
dc.description.references Beigi, F., Gonzalez, D. R., Minhas, K. M., Sun, Q. A., Foster, M. W., Khan, S. A., Treuer, A. V., Dulce, R. A., Harrison, R. W., Saraiva, R. M., Premer, C., Schulman, I. H., Stamler, J. S., & Hare, J. M. (2012). Dynamic denitrosylation via S-nitrosoglutathione reductase regulates cardiovascular function. Proceedings of the National Academy of Sciences of the United States of America, 109, 4314–4319. es_ES
dc.description.references Broniowska, K. A., Diers, A. R., & Hogg, N. (2013). S-nitrosoglutathione. Biochimica et Biophysica Acta, 1830, 3173–3181. es_ES
dc.description.references Zaman, K., Palmer, L. A., Doctor, A., Hunt, J. F., & Gaston, B. (2004). Concentration-dependent effects of endogenous S-nitrosoglutathione on gene regulation by specificity proteins Sp3 and Sp1. The Biochemical Journal, 380, 67–74. es_ES
dc.description.references Janse, M. J., Coronel, R., Wilms-Schopman, F. J. G., & de Groot, J. R. (2003). Mechanical effects on arrhythmogenesis: From pipette to patient. Progress in Biophysics and Molecular Biology, 82, 187–195. es_ES
dc.description.references Quinn, T. A., & Kohl, P. (2016). Rabbit models of cardiac mechano-electric and mechano-mechanical coupling. Progress in Biophysics and Molecular Biology, 121, 110–122. es_ES
dc.description.references Vila-Petroff, M., Kim, S. H., Pepe, S., Dessy, C., Marbán, E., Balligand, J. L., & Sollott, S. J. (2001). Endogenous nitric oxide mechanisms mediate the stretch-dependency of Ca2+ release in cardiomyocytes. Nature Cell Biology, 3, 867–873. es_ES
dc.description.references Leite-Moreira, A. M., Neves, J. S., Almeida-Coelho, J., Neiva-Sousa, M., & Leite-Moreira, A. F. (2016). On the study of the role of NO-mediated pathways in the myocardial response to acute stretch. Nitric Oxide: Biology and Chemistry, 53, 1–3. es_ES
dc.description.references Peyronnet, R., Nerbonne, J. M., & Kohl, P. (2016). Cardiac mechano-gated ion channels and arrhythmias. Circulation Research 118, 311–329. es_ES
dc.description.references Fischmeister, R., Castro, L., Abi-Gerges, A., Rochais, F., & Vandecasteele, G. (2005). Species- and tissue-dependent effects of NO and cyclic GMP on cardiac ion channels. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 142, 136–143. es_ES
dc.description.references Kazanski, V. E., Kamkin, A. G., Makarenko, E. Y., Lysenko, N. N., Sutiagin, P. V., Bo, T., & Kiseleva, I. S. (2010). Role of nitric oxide in activity control of mechanically gated ionic channels in cardiomyocytes: NO-donor study. Bulletin of Experimental Biology and Medicine, 150, 1–5. es_ES
dc.description.references Dyachenko, V., Rueckschloss, U., & Isenberg, G. (2009). Modulation of cardiac mechanosensitive ion channels involves superoxide, nitric oxide and peroxynitrite. Cell Calcium, 45, 55–64. es_ES
dc.description.references Chorro, F. J., Trapero, I., Guerrero, J., Such, L. M., Canoves, J., Mainar, L., Ferrero, A., Blasco, E., Sanchis, J., Millet, J., Tormos, A., Bodí, V., & Alberola, A. (2005). Modification of ventricular fibrillation activation patterns induced by local stretching. Journal of Cardiovascular Electrophysiology, 16, 1087–1096. es_ES
dc.description.references Chorro, F. J., Trapero, I., Such-Miquel, L., Pelechano, F., Mainar, L., Cánoves, J., Tormos, A., Alberola, A., Hove-Madsen, L., Cinca, J., & Such, L. (2009). Pharmacological modifications of the stretch-induced effects on ventricular fibrillation in perfused rabbit-hearts. American Journal of Physiology Heart and Circulatory Physiology, 297, H1860–H1869. es_ES
dc.description.references Brines, L., Such-Miquel, L., Gallego, D., Trapero, I., Del Canto, I., Zarzoso, M., Soler, C., Pelechano, F., Cánoves, J., Alberola, A., Such, L., & Chorro, F. J. (2012). Modifications of mechanoelectric feedback induced by 2,3-butanedione monoxime and blebbistatin in Langendorff-perfused rabbit hearts. Acta Physiologica, 206, 29–41. es_ES
dc.description.references Chorro, F. J., del Canto, I., Brines, L., Such-Miquel, L., Calvo, C., Soler, C., Zarzoso, M., Trapero, I., Tormos, Á, & Such, L. (2015). Experimental study of the effects of EIPA, losartan and BQ-123 on electrophysiological changes induced by myocardial stretch. Revista Espanola de Cardiologia, 68, 1101–1110. es_ES
dc.description.references Chorro, F. J., del Canto, I., Brines, L., Such-Miquel, L., Calvo, C., Soler, C., Parra, G., Zarzoso, M., Trapero, I., Tormos, A., Alberola, A., & Such, L. (2015). Ranolazine attenuates the electrophysiological effects of myocardial stretch in Langendorff-perfused rabbit hearts. Cardiovascular Drugs and Therapy, 29, 231–241. es_ES
dc.description.references Kelly, R. A., Balligand, J. L., & Smith, T. W. (1996). Nitric oxide and cardiac function. Circulation Research, 79, 363–380. es_ES
dc.description.references Kojda, G., & Kottenberg, K. (1999). Regulation of basal myocardial function by NO. Cardiovascular Research, 41, 514–523. es_ES
dc.description.references Massion, P. B., Feron, O., Dessy, C., & Balligand, J. L. (2003). Nitric oxide and cardiac function: Ten years after, and continuing. Circulation Research, 93, 388–398. es_ES
dc.description.references Shah, A. M., & MacCarthy, P. A. (2000). Paracrine and autocrine effects of nitric oxide on myocardial function. Pharmacology & Therapeutics, 86, 49–86. es_ES
dc.description.references Zhang, Y. H., Dingle, L., Hall, R., & Casadei, B. (2009). The role of nitric oxide and reactive oxygen species in the positive inotropic response to mechanical stretch in the mammalian myocardium. Biochimica et Biophysica Acta, 1787, 811–817. es_ES
dc.description.references Chorro, F. J., Ibañez-Catalá, X., Trapero, I., Such-Miquel, L., Pelechano, F., Cánoves, J., Mainar, L., Tormos, A., Cerdá, J. M., Alberola, A., & Such, L. (2013). Ventricular fibrillation conduction through an isthmus of preserved myocardium between radiofrequency lesions. Pacing and Clinical Electrophysiology, 36, 286–298. es_ES
dc.description.references Gaston, B., Reilly, J., Drazen, J. M., Fackler, J., Ramdev, P., Arnelle, D., Mullins, M. E., Sugarbaker, D. J., Chee, C., Singel, D. J., Loscalzo, J., & Stamler, J. (1993). Endogenous nitrogen oxides and bronchodilator S-nitrosothiols in human airways. Proceedings of the National Academy of Sciences of the United States of America, 90, 10957–10961. es_ES
dc.description.references Radomski, M. W., Rees, D. D., Dutra, A., & Moncada, S. (1992). S-nitroso-glutathione inhibits platelet activation in vitro and in vivo. British Journal of Pharmacology, 107, 745–749. es_ES
dc.description.references Zaman, K., McPherson, M., Vaughan, J., Hunt, J., Mendes, F., Gaston, B., & Palmer, L. A. (2001). S-nitrosoglutathione increases cystic fibrosis transmembrane regulator maturation. Biochemical and Biophysical Research Communications, 284, 65–70. es_ES
dc.description.references Zaman, K., Carraro, S., Doherty, J., Henderson, E. M., Lendermon, E., Liu, L., Verghese, G., Zigler, M., Ross, M., Park, M., Palmer, L. A., Doctor, A., Stamler, J. S., & Gaston, B. (2006). S-nitrosylating agents: A novel class of compounds that increase cystic fibrosis transmembrane conductance regulator expression and maturation in epithelial cells. Molecular Pharmacology, 70, 1435–1442. es_ES
dc.description.references Kaposzta, Z., Baskerville, P. A., Madge, D., Fraser, S., Martin, J. F., & Markus, H. S. (2001). L-arginine and S-nitrosoglutathione reduce embolization in humans. Circulation, 103, 2371–2375. es_ES
dc.description.references Kaposzta, Z., Clifton, A., Molloy, J., Martin, J. F., & Markus, H. S. (2002). S-nitrosoglutathione reduces asymptomatic embolization after carotid angioplasty. Circulation, 106, 2057–3062. es_ES
dc.description.references Everett, T. R., Wilkinson, I. B., Mahendru, A. A., McEniery, C. M., Garner, S., Goodall, A. H., & Lees, C. C. (2014). S-nitrosoglutathione improves haemodynamics in early-onset pre-eclampsia. British Journal of Clinical Pharmacology, 78, 660–669. es_ES
dc.description.references Everett, T. R., Wilkinson, I. B., & Lees, C. C. (2017). Pre-eclampsia: The potential of GSNO reductase inhibitors. Current Hypertension Reports, 19, 1–7. es_ES
dc.description.references Oppenheim, A., & Schafer, R. (1975). Digital signal processing. Englewood Cliffs: Prentice Hall. es_ES
dc.description.references Such-Miquel, L., Chorro, F. J., Guerrero, J., Trapero, I., Brines, L., Zarzoso, M., Parra, G., Soler, C., del Canto, I., Alberola, A., & Such, L. (2013). Evaluation of the complexity of myocardial activation during ventricular fibrillation. An experimental study. Revista Espanola de Cardiologia, 66, 177–184. es_ES
dc.description.references Erickson, J. R., Nichols, C. B., Uchinoumi, H., Stein, M., Bossuyt, J., & Bers, D. M. (2015). S-nitrosylation induces both autonomous activation and inhibition of calcium/calmodulin-dependent protein kinase IIδ. Journal of Biological Chemistry, 290, 25646–25656. es_ES
dc.description.references Gómez, R., Caballero, R., Barana, A., Amorós, I., Calvo, E., López, J. A., Klein, H., Vaquero, M., Osuna, L., Atienza, F., Almendral, J., Pinto, A., Tamargo, J., & Delpón, E. (2009). Nitric oxide increases cardiac IK1 by nitrosylation of cysteine 76 of Kir2.1 channels. Circulation Research, 105, 383–392. es_ES
dc.description.references Sun, J., Yamaguchi, N., Xu, L., Eu, J. P., Stamler, J. S., & Meissner, G. (2008). Regulation of the cardiac muscle ryanodine receptor by O2 tension and S-nitrosoglutathione. Biochemistry, 47, 13985–13990. es_ES
dc.description.references Xu, L., Eu, J. P., Meissner, G., & Stamler, J. S. (1998). Activation of the cardiac calcium release channel (ryanodine receptor) by poly-S-nitrosylation. Science, 279, 234–237. es_ES
dc.description.references Zahradnikova, A., Minarovic, I., Venema, R. C., & Meszaros, L. G. (1997). Inactivation of the cardiac ryanodine receptor calcium release channel by nitric oxide. Cell Calcium, 22, 447–454. es_ES
dc.description.references Kirstein, M., Rivet-Bastide, M., Hatem, S., Bénardeau, A., Mercadier, J. J., & Fischmeister, R. (1995). Nitric Oxide regulates the calcium current in isolated human atrial myocytes. Journal of Clinical Investigation, 95, 794–802. es_ES
dc.description.references Rivet-Bastide, M., Vandecasteele, G., Hatem, S., Verde, I., Bénardeau, A., Mercadier, J. J., & Fischmeister, R. (1997). cGMP-stimulated cyclic nucleotide phosphodiesterase regulates the basal calcium current in human atrial myocytes. Journal of Clinical Investigation, 99, 2710–2718. es_ES
dc.description.references Lim, G., Venetucci, L., Eisner, D. A., & Casadei, B. (2008). Does nitric oxide modulate cardiac ryanodine receptor function? Implications for excitation–contraction coupling. Cardiovascular Research, 77, 256–264. es_ES
dc.description.references Ling, L., Hui, Y., Bing, G., Xin, H., Jing, W., & Jin-Cheng, L. (2015). Nitric oxide donor, NOC7, reveals dose dependently and cGMP pathway independently biphasic effects on contractile force of isolated rat heart after global ischemia. International Journal of Clinical and Experimental Pathology, 8, 3843–3849. es_ES
dc.description.references Cingolani, H. E., Ennis, I. L., Aiello, E. A., & Pérez, N. G. (2011). Role of autocrine/paracrine mechanisms in response to myocardial strain. Pflugers Archiv European Journal of Physiology, 462, 29–38. es_ES
dc.description.references Youm, J. B., Han, J., Kim, N., Zhang, Y. H., Kim, E., Joo, H., Leem, C. H., Kim, S. J., Cha, K. A., Earm, Y. E., & Leem, C. H. (2006). Role of stretch-activated channels on the stretch-induced changes of rat atrial myocytes. Progress in Biophysics and Molecular Biology, 90, 186–206. es_ES
dc.description.references von Lewinski, D., Stumme, B., Maier, L. S., Luers, C., Bers, D. M., & Pieske, B. (2003). Stretch-dependent slow force response in isolated rabbit myocardium is Na+ dependent. Cardiovascular Research, 57, 1052–1061. es_ES
dc.description.references Calaghan, S. C., Belus, A., & White, E. (2003). Do stretch-induced changes in intracellular calcium modify the electrical activity of cardiac muscle? Progress in Biophysics and Molecular Biology, 82, 91–95. es_ES
dc.description.references Zhang, Y. H., Dingle, L., Hall, R., & Casadei, B. (2009). The role of nitric oxide and reactive oxygen species in the positive inotropic response to mechanical stretch in the mammalian myocardium. Biochimica Biophysica Acta, 1787, 811–817. es_ES
dc.description.references Sag, C. M., Wagner, S., & Maier, L. S. (2013). Role of oxidants on calcium and sodium movement in healthy and diseased cardiac myocytes. Free Radical Biology and Medicine, 63, 338–349. es_ES
dc.description.references Janvier, N. C., & Boyett, M. R. (1996). The role of Na-Ca exchange current in the cardiac action potential. Cardiovascular Research, 32, 69–84. es_ES
dc.description.references Kovács, M., Kiss, A., Gönczi, M., Miskolczi, G., Seprényl, G., Kaszaki, J., Kohr, M. J., Murphy, E., & Vegh, A. (2015). Effect of sodium nitrite on ischaemia and reperfusion-induced arrhythmias in anaesthetized dogs: Is protein S-nitrosylation involved? PLoS ONE, 10(4), e0122243 (eCollection 2015). https://doi.org/10.1371/journal.pone.0122243 . es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem