Mostrar el registro sencillo del ítem
dc.contributor.author | Martínez Iranzo, Miguel Andrés | es_ES |
dc.contributor.author | Herrero Durá, Juan Manuel | es_ES |
dc.contributor.author | Sanchís Saez, Javier | es_ES |
dc.contributor.author | Blasco, Xavier | es_ES |
dc.contributor.author | García-Nieto, Sergio | es_ES |
dc.date.accessioned | 2019-09-13T20:01:02Z | |
dc.date.available | 2019-09-13T20:01:02Z | |
dc.date.issued | 2009 | es_ES |
dc.identifier.issn | 0952-1976 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/125654 | |
dc.description.abstract | [EN] It is well known that many engineering design problems with different objectives, some of which can be opposed to one another, can be formulated as multi-objective functions and resolved with the construction of a Pareto front that helps to select the desired solution. Obtaining a correct Pareto front is not a trivial question, because it depends on the complexity of the objective functions to be optimized, the constraints to keep within and, in particular, the optimizer type selected to carry out the calculations. This paper presents new methods for Pareto front construction based on stochastic search algorithms (genetic algorithms, GAs and multi-objective genetic algorithms, MOGAs) that enable a very good determination of the Pareto front and fulfill some interesting specifications. The advantages of these applied methods will be proven by the optimization of well-known benchmarks for metallic supported I-beam and gearbox design. (C) 2008 Elsevier Ltd. All rights reserved. | es_ES |
dc.description.sponsorship | This research has been partially financed by GV06-026 Generalitat Valenciana and DPI2005-07835, MEC (Spain)-FEDER. | |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Engineering Applications of Artificial Intelligence | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Multi-objective optimization | es_ES |
dc.subject | Pareto front | es_ES |
dc.subject | Engineering design | es_ES |
dc.subject | Genetic algorithms | es_ES |
dc.subject | Multi-objective genetic algorithms | es_ES |
dc.subject.classification | INGENIERIA DE SISTEMAS Y AUTOMATICA | es_ES |
dc.title | Applied Pareto multi-objective optimization by stochastic solvers | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.engappai.2008.10.018 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//DPI2005-07835/ES/OPTIMIZACION MULTIOBJETIVO CON PHYSICAL PROGRAMMING. APLICACION A LA OPTIMIZACION DE CONSIGNAS EN CONTROL PREDICTIVO Y AL AJUSTE DE CONTROLADORES PREDICTIVOS MULTIVARIABLES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//GV06%2F026/ES/Un nuevo sistema de producción inteligente: Optimización multiobjetivo con Physical Programming. Aplicación en control predictivo Multivariable/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica | es_ES |
dc.description.bibliographicCitation | Martínez Iranzo, MA.; Herrero Durá, JM.; Sanchís Saez, J.; Blasco, X.; García-Nieto, S. (2009). Applied Pareto multi-objective optimization by stochastic solvers. Engineering Applications of Artificial Intelligence. 22(3):455-465. https://doi.org/10.1016/j.engappai.2008.10.018 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1016/j.engappai.2008.10.018 | es_ES |
dc.description.upvformatpinicio | 455 | es_ES |
dc.description.upvformatpfin | 465 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 22 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.pasarela | S\36595 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Educación y Ciencia | es_ES |