- -

Applied Pareto multi-objective optimization by stochastic solvers

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Applied Pareto multi-objective optimization by stochastic solvers

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Martínez Iranzo, Miguel Andrés es_ES
dc.contributor.author Herrero Durá, Juan Manuel es_ES
dc.contributor.author Sanchís Saez, Javier es_ES
dc.contributor.author Blasco, Xavier es_ES
dc.contributor.author García-Nieto, Sergio es_ES
dc.date.accessioned 2019-09-13T20:01:02Z
dc.date.available 2019-09-13T20:01:02Z
dc.date.issued 2009 es_ES
dc.identifier.issn 0952-1976 es_ES
dc.identifier.uri http://hdl.handle.net/10251/125654
dc.description.abstract [EN] It is well known that many engineering design problems with different objectives, some of which can be opposed to one another, can be formulated as multi-objective functions and resolved with the construction of a Pareto front that helps to select the desired solution. Obtaining a correct Pareto front is not a trivial question, because it depends on the complexity of the objective functions to be optimized, the constraints to keep within and, in particular, the optimizer type selected to carry out the calculations. This paper presents new methods for Pareto front construction based on stochastic search algorithms (genetic algorithms, GAs and multi-objective genetic algorithms, MOGAs) that enable a very good determination of the Pareto front and fulfill some interesting specifications. The advantages of these applied methods will be proven by the optimization of well-known benchmarks for metallic supported I-beam and gearbox design. (C) 2008 Elsevier Ltd. All rights reserved. es_ES
dc.description.sponsorship This research has been partially financed by GV06-026 Generalitat Valenciana and DPI2005-07835, MEC (Spain)-FEDER.
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Engineering Applications of Artificial Intelligence es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Multi-objective optimization es_ES
dc.subject Pareto front es_ES
dc.subject Engineering design es_ES
dc.subject Genetic algorithms es_ES
dc.subject Multi-objective genetic algorithms es_ES
dc.subject.classification INGENIERIA DE SISTEMAS Y AUTOMATICA es_ES
dc.title Applied Pareto multi-objective optimization by stochastic solvers es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.engappai.2008.10.018 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//DPI2005-07835/ES/OPTIMIZACION MULTIOBJETIVO CON PHYSICAL PROGRAMMING. APLICACION A LA OPTIMIZACION DE CONSIGNAS EN CONTROL PREDICTIVO Y AL AJUSTE DE CONTROLADORES PREDICTIVOS MULTIVARIABLES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GV06%2F026/ES/Un nuevo sistema de producción inteligente: Optimización multiobjetivo con Physical Programming. Aplicación en control predictivo Multivariable/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica es_ES
dc.description.bibliographicCitation Martínez Iranzo, MA.; Herrero Durá, JM.; Sanchís Saez, J.; Blasco, X.; García-Nieto, S. (2009). Applied Pareto multi-objective optimization by stochastic solvers. Engineering Applications of Artificial Intelligence. 22(3):455-465. https://doi.org/10.1016/j.engappai.2008.10.018 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1016/j.engappai.2008.10.018 es_ES
dc.description.upvformatpinicio 455 es_ES
dc.description.upvformatpfin 465 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 22 es_ES
dc.description.issue 3 es_ES
dc.relation.pasarela S\36595 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Educación y Ciencia es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem