- -

Nonlinear Robust Identification using Evolutionary Algorithms. Application to a Biomedical Process

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Nonlinear Robust Identification using Evolutionary Algorithms. Application to a Biomedical Process

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Herrero Durá, Juan Manuel es_ES
dc.contributor.author Blasco, Xavier es_ES
dc.contributor.author Martínez Iranzo, Miguel Andrés es_ES
dc.contributor.author Ramos Fernández, César es_ES
dc.contributor.author Sanchís Saez, Javier es_ES
dc.date.accessioned 2019-09-13T20:01:14Z
dc.date.available 2019-09-13T20:01:14Z
dc.date.issued 2008 es_ES
dc.identifier.issn 0952-1976 es_ES
dc.identifier.uri http://hdl.handle.net/10251/125656
dc.description.abstract [EN] This work describes a new methodology for robust identification (RI), meaning the identification of the parameters of a model and the characterization of uncertainties. The alternative proposed handles non-linear models and can take into account the different properties demanded by the model. The indicator that leads the identification process is the identification error (IE), that is, the difference between experimental data and model response. In particular, the methodology obtains the feasible parameter set (FPS, set of parameter values which satisfy a bounded IE) and a nominal model in a non-linear identification problem. To impose different properties on the model, several norms of the IE are used and bounded simultaneously. This improves the model quality, but increases the problem complexity. The methodology proposes that the RI problem is transformed into a multimodal optimization problem with an infinite number of global minima which constitute the FPS. For the optimization task, a special genetic algorithm (epsilon-GA), inspired by Multiobjective Evolutionary Algorithms, is presented. This algorithm characterizes the FPS by means of a discrete set of models well distributed along the FPS. Finally, an application for a biomedical model which shows the blockage that a given drug produces on the ionic currents of a cardiac cell is presented to illustrate the methodology. (C) 2008 Elsevier Ltd. All rights reserved. es_ES
dc.description.sponsorship Partially supported by MEC (Spanish government) and FEDER funds: Projects DP12005-07835, DP12004-8383-CO3-02 and Generalitat Valenciana (Spain) Project GVA-026. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Engineering Applications of Artificial Intelligence es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Robust identification es_ES
dc.subject Multimodal optimization es_ES
dc.subject Multiobjective optimization es_ES
dc.subject Evolutionary algorithms es_ES
dc.subject Biomedical processes es_ES
dc.subject.classification INGENIERIA DE SISTEMAS Y AUTOMATICA es_ES
dc.title Nonlinear Robust Identification using Evolutionary Algorithms. Application to a Biomedical Process es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.engappai.2008.05.001 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GV06%2F026/ES/Un nuevo sistema de producción inteligente: Optimización multiobjetivo con Physical Programming. Aplicación en control predictivo Multivariable/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//DPI2005-07835/ES/OPTIMIZACION MULTIOBJETIVO CON PHYSICAL PROGRAMMING. APLICACION A LA OPTIMIZACION DE CONSIGNAS EN CONTROL PREDICTIVO Y AL AJUSTE DE CONTROLADORES PREDICTIVOS MULTIVARIABLES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//DPI2004-08383-C03-02/ES/GESTION DE LA RECIRCULACION DEL GAS DE ESCAPE EN MOTORES DIESEL TURBOALIMENTADOS. CONTROL PREDICTIVO MULTIVARIABLE./ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica es_ES
dc.description.bibliographicCitation Herrero Durá, JM.; Blasco, X.; Martínez Iranzo, MA.; Ramos Fernández, C.; Sanchís Saez, J. (2008). Nonlinear Robust Identification using Evolutionary Algorithms. Application to a Biomedical Process. Engineering Applications of Artificial Intelligence. 21(8):1397-1408. https://doi.org/10.1016/j.engappai.2008.05.001 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1016/j.engappai.2008.05.001 es_ES
dc.description.upvformatpinicio 1397 es_ES
dc.description.upvformatpfin 1408 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 21 es_ES
dc.description.issue 8 es_ES
dc.relation.pasarela S\34046 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Educación y Ciencia es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem