Mostrar el registro sencillo del ítem
dc.contributor.author | Burgos-Simon, Clara | es_ES |
dc.contributor.author | Calatayud-Gregori, Julia | es_ES |
dc.contributor.author | Cortés, J.-C. | es_ES |
dc.contributor.author | Navarro-Quiles, A. | es_ES |
dc.date.accessioned | 2019-09-13T20:01:20Z | |
dc.date.available | 2019-09-13T20:01:20Z | |
dc.date.issued | 2018 | es_ES |
dc.identifier.issn | 0170-4214 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/125657 | |
dc.description.abstract | [EN] This paper provides a full probabilistic solution of the randomized fractional linear nonhomogeneous differential equation with a random initial condition via the computation of the first probability density function of the solution stochastic process. To account for most generality in our analysis, we assume that uncertainty appears in all input parameters (diffusion coefficient, source term, and initial condition) and that a wide range of probabilistic distributions can be assigned to these parameters. Throughout our study, we will consider that the fractional order of Caputo derivative lies in] 0,1], that corresponds to the main standard case. To conduct our analysis, we take advantage of the random variable transformation technique to construct approximations of the first probability density function of the solution process from a suitable infinite series representation. We then prove these approximations do converge to the exact density assuming mild conditions on random input parameters. Our theoretical findings are illustrated through 2 numerical examples. | es_ES |
dc.description.sponsorship | Ministerio de Economia y Competitividad, Grant/Award Number: MTM2017-89664-P; Programa de Ayudas de Investigacion y Desarrollo, Grant/Award Number: PAID-2014; UNiversitat Politecncia de Valencia | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | Mathematical Methods in the Applied Sciences | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Random fractional differential equations | es_ES |
dc.subject | Random Variable Transformation technique | es_ES |
dc.subject | First probability density function | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | A full probabilistic solution of the random linear fractional differential equation via the Random Variable Transformation technique | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/mma.4881 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-89664-P/ES/PROBLEMAS DINAMICOS CON INCERTIDUMBRE SIMULABLE: MODELIZACION MATEMATICA, ANALISIS, COMPUTACION Y APLICACIONES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària | es_ES |
dc.description.bibliographicCitation | Burgos-Simon, C.; Calatayud-Gregori, J.; Cortés, J.; Navarro-Quiles, A. (2018). A full probabilistic solution of the random linear fractional differential equation via the Random Variable Transformation technique. Mathematical Methods in the Applied Sciences. 41(18):9037-9047. https://doi.org/10.1002/mma.4881 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1002/mma.4881 | es_ES |
dc.description.upvformatpinicio | 9037 | es_ES |
dc.description.upvformatpfin | 9047 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 41 | es_ES |
dc.description.issue | 18 | es_ES |
dc.relation.pasarela | S\353802 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |