- -

Using genetic programming to evolve action selection rules in traversal-based automated software testing: results obtained with the TESTAR tool

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Using genetic programming to evolve action selection rules in traversal-based automated software testing: results obtained with the TESTAR tool

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Esparcia Alcázar, Anna Isabel es_ES
dc.contributor.author Almenar-Pedrós, Francisco es_ES
dc.contributor.author Vos, Tanja Ernestina es_ES
dc.contributor.author Rueda Molina, Urko es_ES
dc.date.accessioned 2019-09-13T20:01:23Z
dc.date.available 2019-09-13T20:01:23Z
dc.date.issued 2018 es_ES
dc.identifier.issn 1865-9284 es_ES
dc.identifier.uri http://hdl.handle.net/10251/125658
dc.description.abstract [EN] Traversal-based automated software testing involves testing an application via its graphical user interface (GUI) and thereby taking the user's point of view and executing actions in a human-like manner. These actions are decided on the fly, as the software under test (SUT) is being run, as opposed to being set up in the form of a sequence prior to the testing, a sequence that is then used to exercise the SUT. In practice, random choice is commonly used to decide which action to execute at each state (a procedure commonly referred to as monkey testing), but a number of alternative mechanisms have also been proposed in the literature. Here we propose using genetic programming (GP) to evolve such an action selection strategy, defined as a list of IF-THEN rules. Genetic programming has proved to be suited for evolving all sorts of programs, and rules in particular, provided adequate primitives (functions and terminals) are defined. These primitives must aim to extract the most relevant information from the SUT and the dynamics of the testing process. We introduce a number of such primitives suited to the problem at hand and evaluate their usefulness based on various metrics. We carry out experiments and compare the results with those obtained by random selection and also by Q-learning, a reinforcement learning technique. Three applications are used as Software Under Test (SUT) in the experiments. The analysis shows the potential of GP to evolve action selection strategies. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Memetic Computing es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Automated software testing via the GUI es_ES
dc.subject Genetic programming es_ES
dc.subject Action selection for testing es_ES
dc.subject Testing metrics es_ES
dc.subject.classification INGENIERIA DE SISTEMAS Y AUTOMATICA es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Using genetic programming to evolve action selection rules in traversal-based automated software testing: results obtained with the TESTAR tool es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s12293-018-0263-8 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Esparcia Alcázar, AI.; Almenar-Pedrós, F.; Vos, TE.; Rueda Molina, U. (2018). Using genetic programming to evolve action selection rules in traversal-based automated software testing: results obtained with the TESTAR tool. Memetic Computing. 10(3):257-265. https://doi.org/10.1007/s12293-018-0263-8 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1007/s12293-018-0263-8 es_ES
dc.description.upvformatpinicio 257 es_ES
dc.description.upvformatpfin 265 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 3 es_ES
dc.relation.pasarela S\369592 es_ES
dc.description.references Aho P, Menz N, Rty T (2013) Dynamic reverse engineering of GUI models for testing. In: Proceedings of 2013 international conference on control, decision and information technologies (CoDIT’13) es_ES
dc.description.references Aho P, Oliveira R, Algroth E, Vos T (2016) Evolution of automated testing of software systems through graphical user interface. In: Procs. of the 1st international conference on advances in computation, communications and services (ACCSE 2016), Valencia, pp 16–21 es_ES
dc.description.references Alegroth E, Feldt R, Ryrholm L (2014) Visual GUI testing in practice: challenges, problems and limitations. Empir Softw Eng 20:694–744. https://doi.org/10.1007/s10664-013-9293-5 es_ES
dc.description.references Barr ET, Harman M, McMinn P, Shahbaz M, Yoo S (2015) The oracle problem in software testing: a survey. IEEE Trans Softw Eng 41(5):507–525 es_ES
dc.description.references Bauersfeld S, Vos TEJ (2012) A reinforcement learning approach to automated GUI robustness testing. In: Fast abstracts of the 4th symposium on search-based software engineering (SSBSE 2012), pp 7–12 es_ES
dc.description.references Bauersfeld S, de Rojas A, Vos T (2014) Evaluating rogue user testing in industry: an experience report. In: 2014 IEEE eighth international conference on research challenges in information science (RCIS), pp 1–10. https://doi.org/10.1109/RCIS.2014.6861051 es_ES
dc.description.references Bauersfeld S, Vos TEJ, Condori-Fernández N, Bagnato A, Brosse E (2014) Evaluating the TESTAR tool in an industrial case study. In: 2014 ACM-IEEE international symposium on empirical software engineering and measurement, ESEM 2014, Torino, Italy, September 18–19, 2014, p 4 es_ES
dc.description.references Bauersfeld S, Wappler S, Wegener J (2011) A metaheuristic approach to test sequence generation for applications with a GUI. In: Cohen MB, Ó Cinnéide M (eds) Search based software engineering: third international symposium, SSBSE 2011, Szeged, Hungary, September 10-12, 2011. Proceedings. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 173–187 es_ES
dc.description.references Brameier MF, Banzhaf W (2010) Linear genetic programming, 1st edn. Springer, New York es_ES
dc.description.references Chaudhary N, Sangwan O (2016) Metrics for event driven software. Int J Adv Comput Sci Appl 7(1):85–89 es_ES
dc.description.references Esparcia-Alcázar AI, Almenar F, Martínez M, Rueda U, Vos TE (2016) Q-learning strategies for action selection in the TESTAR automated testing tool. In: Proceedings of META 2016 6th international conference on metaheuristics and nature inspired computing, pp 174–180 es_ES
dc.description.references Esparcia-Alcázar AI, Almenar F, Rueda U, Vos TEJ (2017) Evolving rules for action selection in automated testing via genetic programming–a first approach. In: Squillero G, Sim K (eds) Applications of evolutionary computation: 20th European conference, evoapplications 2017, Amsterdam, The Netherlands, April 19–21, 2017, Proceedings, part II. Springer, pp 82–95. https://doi.org/10.1007/978-3-319-55792-2_6 es_ES
dc.description.references Esparcia-Alcázar AI, Moravec J (2013) Fitness approximation for bot evolution in genetic programming. Soft Comput 17(8):1479–1487. https://doi.org/10.1007/s00500-012-0965-7 es_ES
dc.description.references He W, Zhao R, Zhu Q (2015) Integrating evolutionary testing with reinforcement learning for automated test generation of object-oriented software. Chin J Electron 24(1):38–45 es_ES
dc.description.references Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection. MIT Press, Cambridge es_ES
dc.description.references Lehman J, Stanley KO (2011) Novelty search and the problem with objectives. In: Riolo R, Vladislavleva E, Moore JH (eds) Genetic programming theory and practice IX, genetic and evolutionary computation. Springer, New York, pp 37–56 es_ES
dc.description.references Memon AM, Soffa ML, Pollack ME (2001) Coverage criteria for GUI testing. In: Proceedings of ESEC/FSE 2001, pp 256–267 es_ES
dc.description.references Rueda U, Vos TEJ, Almenar F, Martínez MO, Esparcia-Alcázar AI (2015) TESTAR: from academic prototype towards an industry-ready tool for automated testing at the user interface level. In: Canos JH, Gonzalez Harbour M (eds) Actas de las XX Jornadas de Ingeniería del Software y Bases de Datos (JISBD 2015), pp 236–245 es_ES
dc.description.references Seesing A, Gross HG (2006) A genetic programming approach to automated test generation for object-oriented software. Int Trans Syst Sci Appl 1(2):127–134 es_ES
dc.description.references Vos TE, Kruse PM, Condori-Fernández N, Bauersfeld S, Wegener J (2015) TESTAR: tool support for test automation at the user interface level. Int J Inf Syst Model Des 6(3):46–83. https://doi.org/10.4018/IJISMD.2015070103 es_ES
dc.description.references Wappler S, Wegener J (2006) Evolutionary unit testing of object-oriented software using strongly-typed genetic programming. In: Proceedings of the 8th annual conference on genetic and evolutionary computation, GECCO’06. ACM, New York, NY, USA, pp 1925–1932. URL https://doi.org/10.1145/1143997.1144317 es_ES
dc.description.references Watkins C (1989) Learning from delayed rewards. Ph.D. Thesis. Cambridge University es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem