Abstract:
|
[EN] If last decade viewed computational services as a utility then surely
this decade has transformed computation into a commodity. Computation
is now progressively integrated into the physical networks in
a seamless ...[+]
[EN] If last decade viewed computational services as a utility then surely
this decade has transformed computation into a commodity. Computation
is now progressively integrated into the physical networks in
a seamless way that enables cyber-physical systems (CPS) and the
Internet of Things (IoT) meet their latency requirements. Similar to
the concept of ¿platform as a service¿ or ¿software as a service¿, both
cloudlets and fog computing have found their own use cases. Edge
devices (that we call end or user devices for disambiguation) play the
role of personal computers, dedicated to a user and to a set of correlated
applications. In this new scenario, the boundaries between
the network node, the sensor, and the actuator are blurring, driven
primarily by the computation power of IoT nodes like single board
computers and the smartphones. The bigger data generated in this
type of networks needs clever, scalable, and possibly decentralized
computing solutions that can scale independently as required. Any
node can be seen as part of a graph, with the capacity to serve as a
computing or network router node, or both. Complex applications can
possibly be distributed over this graph or network of nodes to improve
the overall performance like the amount of data processed over time.
In this paper, we identify this new computing paradigm that we call
Social Dispersed Computing, analyzing key themes in it that includes
a new outlook on its relation to agent based applications. We architect
this new paradigm by providing supportive application examples that
include next generation electrical energy distribution networks, next
generation mobility services for transportation, and applications for
distributed analysis and identification of non-recurring traffic congestion
in cities. The paper analyzes the existing computing paradigms
(e.g., cloud, fog, edge, mobile edge, social, etc.), solving the ambiguity
of their definitions; and analyzes and discusses the relevant foundational
software technologies, the remaining challenges, and research
opportunities.
[-]
|