- -

Parallel Direct Solution of the Covariance-Localized Ensemble Square Root Kalman Filter Equations with Matrix Functions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Parallel Direct Solution of the Covariance-Localized Ensemble Square Root Kalman Filter Equations with Matrix Functions

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Steward, Jeffrey L. es_ES
dc.contributor.author Roman, Jose E. es_ES
dc.contributor.author Lamas Daviña, Alejandro es_ES
dc.contributor.author Aksoy, Altug es_ES
dc.date.accessioned 2019-09-13T20:01:59Z
dc.date.available 2019-09-13T20:01:59Z
dc.date.issued 2018 es_ES
dc.identifier.issn 0027-0644 es_ES
dc.identifier.uri http://hdl.handle.net/10251/125667
dc.description.abstract [EN] Recently, the serial approach to solving the square root ensemble Kalman filter (ESRF) equations in the presence of covariance localization was found to depend on the order of observations. As shown previously, correctly updating the localized posterior covariance in serial requires additional effort and computational expense. A recent work by Steward et al. details an all-at-once direct method to solve the ESRF equations in parallel. This method uses the eigenvectors and eigenvalues of the forward observation covariance matrix to solve the difficult portion of the ESRF equations. The remaining assimilation is easily parallelized, and the analysis does not depend on the order of observations. While this allows for long localization lengths that would render local analysis methods inefficient, in theory, an eigenpair-based method scales as the cube number of observations, making it infeasible for large numbers of observations. In this work, we extend this method to use the theory of matrix functions to avoid eigenpair computations. The Arnoldi process is used to evaluate the covariance-localized ESRF equations on the reduced-order Krylov subspace basis. This method is shown to converge quickly and apparently regains a linear scaling with the number of observations. The method scales similarly to the widely used serial approach of Anderson and Collins in wall time but not in memory usage. To improve the memory usage issue, this method potentially can be used without an explicit matrix. In addition, hybrid ensemble and climatological covariances can be incorporated. es_ES
dc.description.sponsorship This research was partially funded by the NOAA Hurricane Forecast Improvement Project Award NA14NWS4680022. This work was partially supported by Agencia Estatal de Investigacion (AEI) under Grant TIN2016-75985-P, which includes European Commission ERDF funds. Alejandro Lamas Davina was supported by the Spanish Ministry of Education, Culture and Sport through a grant with reference FPU13-06655. The fourth author's work was in part carried out under the auspices of CIMAS, a joint institute of the University of Miami and NOAA, Cooperative Agreement NA15OAR4320064. The authors acknowledge the NOAA Research and Development High Performance Computing Program for providing computing and storage resources that have contributed to the research results reported within this paper (http://rdhpcs.noaa.gov). We thank Jeff Anderson, Shu-Chih Yang, and three anonymous reviewers for their helpful comments and contributions. We also thank Hui Christophersen for providing technical assistance.
dc.language Inglés es_ES
dc.publisher American Meteorological Society es_ES
dc.relation.ispartof Monthly Weather Review es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Tropical cyclones es_ES
dc.subject Data processing es_ES
dc.subject Numerical analysis/modeling es_ES
dc.subject Ensembles es_ES
dc.subject Numerical weather prediction/forecasting es_ES
dc.subject Data assimilation es_ES
dc.subject.classification CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL es_ES
dc.title Parallel Direct Solution of the Covariance-Localized Ensemble Square Root Kalman Filter Equations with Matrix Functions es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1175/MWR-D-18-0022.1 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU13%2F06655/ES/FPU13%2F06655/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2016-75985-P/ES/SOLVERS DE VALORES PROPIOS ALTAMENTE ESCALABLES EN EL CONTEXTO DE LA BIBLIOTECA SLEPC/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NOAA//NA14NWS4680022/
dc.relation.projectID info:eu-repo/grantAgreement/NOAA//NA15OAR4320064/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Steward, JL.; Roman, JE.; Lamas Daviña, A.; Aksoy, A. (2018). Parallel Direct Solution of the Covariance-Localized Ensemble Square Root Kalman Filter Equations with Matrix Functions. Monthly Weather Review. 146(9):2819-2836. https://doi.org/10.1175/MWR-D-18-0022.1 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1175/MWR-D-18-0022.1 es_ES
dc.description.upvformatpinicio 2819 es_ES
dc.description.upvformatpfin 2836 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 146 es_ES
dc.description.issue 9 es_ES
dc.relation.pasarela S\367595 es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.contributor.funder National Oceanic and Atmospheric Administration, EEUU
dc.contributor.funder Ministerio de Economía y Competitividad es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem