- -

End-to-end neural network architecture for fraud scoring in card payments

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

End-to-end neural network architecture for fraud scoring in card payments

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gomez, J.A. es_ES
dc.contributor.author Arévalo, Juan es_ES
dc.contributor.author Paredes Palacios, Roberto es_ES
dc.contributor.author Nin, Jordi es_ES
dc.date.accessioned 2019-09-14T20:00:51Z
dc.date.available 2019-09-14T20:00:51Z
dc.date.issued 2018 es_ES
dc.identifier.issn 0167-8655 es_ES
dc.identifier.uri http://hdl.handle.net/10251/125674
dc.description.abstract [EN] Millions of euros are lost every year due to fraudulent card transactions. The design and implementation of efficient fraud detection methods is mandatory to minimize such losses. In this paper, we present a neural network based system for fraud detection in banking systems. We use a real world dataset, and describe an end-to-end solution from the practitioner's perspective, by focusing on the following crucial aspects: unbalancedness, data processing and cost metric evaluation. Our analysis shows that the proposed solution achieves comparable performance values with state-of-the-art proprietary and costly solutions. (c) 2017 Elsevier B.V. All rights reserved. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Pattern Recognition Letters es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Fraud detection es_ES
dc.subject Credit card payments es_ES
dc.subject Deep learning es_ES
dc.subject Neural networks es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title End-to-end neural network architecture for fraud scoring in card payments es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.patrec.2017.08.024 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Gomez, J.; Arévalo, J.; Paredes Palacios, R.; Nin, J. (2018). End-to-end neural network architecture for fraud scoring in card payments. Pattern Recognition Letters. 105:175-181. https://doi.org/10.1016/j.patrec.2017.08.024 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.patrec.2017.08.024 es_ES
dc.description.upvformatpinicio 175 es_ES
dc.description.upvformatpfin 181 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 105 es_ES
dc.relation.pasarela S\350591 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem