- -

A theoretical study on NHC-catalysed enantioselective cycloaddition of ketenes and 3-aroylcoumarins: mechanism and enantioselectivity

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

A theoretical study on NHC-catalysed enantioselective cycloaddition of ketenes and 3-aroylcoumarins: mechanism and enantioselectivity

Show full item record

Zaragoza, RJ.; Aurell, MJ.; González-Cardenete, MA. (2018). A theoretical study on NHC-catalysed enantioselective cycloaddition of ketenes and 3-aroylcoumarins: mechanism and enantioselectivity. Organic & Biomolecular Chemistry. 16(30):5474-5482. https://doi.org/10.1039/c8ob01035h

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/125677

Files in this item

Item Metadata

Title: A theoretical study on NHC-catalysed enantioselective cycloaddition of ketenes and 3-aroylcoumarins: mechanism and enantioselectivity
Author: Zaragoza, Ramón J. Aurell, Maria J. González-Cardenete, Miguel A
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Issued date:
Abstract:
[EN] The NHC-catalysed enantioselective cycloaddition of ketenes to 3-aroylcoumarins to yield dihydrocoumarin-fused dihydropyranones has been investigated using DFT methods at the B3LYP/6-31G* and MPWB1K/6-311G** computational ...[+]
Subjects: Carbene , Enantioselective , Ketene , Aroylcoumarin , DFT
Copyrigths: Reserva de todos los derechos
Source:
Organic & Biomolecular Chemistry. (issn: 1477-0520 )
DOI: 10.1039/c8ob01035h
Publisher:
The Royal Society of Chemistry
Publisher version: http://doi.org/10.1039/c8ob01035h
Project ID:
info:eu-repo/grantAgreement/COLCIENCIAS//RC648-2017/
info:eu-repo/grantAgreement/CSIC//2001680I008/
Thanks:
This study was supported by intramural grant 201680I008 from the Spanish Government (Consejo Superior de Investigaciones Cientificas).
Type: Artículo

References

Flanigan, D. M., Romanov-Michailidis, F., White, N. A., & Rovis, T. (2015). Organocatalytic Reactions Enabled by N-Heterocyclic Carbenes. Chemical Reviews, 115(17), 9307-9387. doi:10.1021/acs.chemrev.5b00060

Wang, Y., Wei, D., & Zhang, W. (2017). Recent Advances on Computational Investigations ofN-Heterocyclic Carbene Catalyzed Cycloaddition/Annulation Reactions: Mechanism and Origin of Selectivities. ChemCatChem, 10(2), 338-360. doi:10.1002/cctc.201701119

Mahatthananchai, J., & Bode, J. W. (2014). On the Mechanism of N-Heterocyclic Carbene-Catalyzed Reactions Involving Acyl Azoliums. Accounts of Chemical Research, 47(2), 696-707. doi:10.1021/ar400239v [+]
Flanigan, D. M., Romanov-Michailidis, F., White, N. A., & Rovis, T. (2015). Organocatalytic Reactions Enabled by N-Heterocyclic Carbenes. Chemical Reviews, 115(17), 9307-9387. doi:10.1021/acs.chemrev.5b00060

Wang, Y., Wei, D., & Zhang, W. (2017). Recent Advances on Computational Investigations ofN-Heterocyclic Carbene Catalyzed Cycloaddition/Annulation Reactions: Mechanism and Origin of Selectivities. ChemCatChem, 10(2), 338-360. doi:10.1002/cctc.201701119

Mahatthananchai, J., & Bode, J. W. (2014). On the Mechanism of N-Heterocyclic Carbene-Catalyzed Reactions Involving Acyl Azoliums. Accounts of Chemical Research, 47(2), 696-707. doi:10.1021/ar400239v

Bugaut, X., & Glorius, F. (2012). Organocatalytic umpolung: N-heterocyclic carbenes and beyond. Chemical Society Reviews, 41(9), 3511. doi:10.1039/c2cs15333e

Zhang, Y.-R., Lv, H., Zhou, D., & Ye, S. (2008). ChiralN-Heterocyclic Carbene-Catalyzed Formal [4+2] Cycloaddition of Ketenes with Enones: Highly Enantioselective Synthesis oftrans- andcis-δ-Lactones. Chemistry - A European Journal, 14(28), 8473-8476. doi:10.1002/chem.200801165

Huang, X.-L., He, L., Shao, P.-L., & Ye, S. (2008). [4+2] Cycloaddition of Ketenes withN-Benzoyldiazenes Catalyzed by N-Heterocyclic Carbenes. Angewandte Chemie International Edition, 48(1), 192-195. doi:10.1002/anie.200804487

Zhang, Y.-R., He, L., Wu, X., Shao, P.-L., & Ye, S. (2008). Chiral N-Heterocyclic Carbene Catalyzed Staudinger Reaction of Ketenes with Imines:  Highly Enantioselective Synthesis ofN-Boc β-Lactams. Organic Letters, 10(2), 277-280. doi:10.1021/ol702759b

Duguet, N., Campbell, C. D., Slawin, A. M. Z., & Smith, A. D. (2008). N-Heterocyclic carbene catalysed β-lactam synthesis. Organic & Biomolecular Chemistry, 6(6), 1108. doi:10.1039/b800857b

Wei, D., Zhu, Y., Zhang, C., Sun, D., Zhang, W., & Tang, M. (2011). A DFT study on enantioselective synthesis of aza-β-lactams via NHC-catalyzed [2+2] cycloaddition of ketenes with diazenedicarboxylates. Journal of Molecular Catalysis A: Chemical, 334(1-2), 108-115. doi:10.1016/j.molcata.2010.11.004

Zhang, M., Wei, D., Wang, Y., Li, S., Liu, J., Zhu, Y., & Tang, M. (2014). DFT study on the reaction mechanisms and stereoselectivities of NHC-catalyzed [2 + 2] cycloaddition between arylalkylketenes and electron-deficient benzaldehydes. Organic & Biomolecular Chemistry, 12(33), 6374. doi:10.1039/c4ob00606b

Wang, X.-N., Shen, L.-T., & Ye, S. (2011). NHC-Catalyzed Enantioselective [2 + 2] and [2 + 2 + 2] Cycloadditions of Ketenes with Isothiocyanates. Organic Letters, 13(24), 6382-6385. doi:10.1021/ol202688h

Wang, X.-N., Lv, H., Huang, X.-L., & Ye, S. (2009). Asymmetric esterification of ketenes catalyzed by an N-heterocyclic carbene. Org. Biomol. Chem., 7(2), 346-350. doi:10.1039/b815139c

Wang, X.-N., Shen, L.-T., & Ye, S. (2011). Enantioselective [2+2+2] cycloaddition of ketenes and carbon disulfide catalyzed by N-heterocyclic carbenes. Chemical Communications, 47(29), 8388. doi:10.1039/c1cc12316e

Douglas, J., Ling, K. B., Concellón, C., Churchill, G., Slawin, A. M. Z., & Smith, A. D. (2010). NHC-Mediated Chlorination of Unsymmetrical Ketenes: Catalysis and Asymmetry. European Journal of Organic Chemistry, 2010(30), 5863-5869. doi:10.1002/ejoc.201000864

Tang, K., Wang, J., Cheng, X., Hou, Q., & Liu, Y. (2010). Theoretical Investigations towards the Staudinger Reaction Catalyzed by N-Heterocyclic Carbene: Mechanism and Stereoselectivity. European Journal of Organic Chemistry, 2010(32), 6249-6255. doi:10.1002/ejoc.201000774

Zhang, W., Zhu, Y., Wei, D., Li, Y., & Tang, M. (2012). Theoretical Investigations toward the [4 + 2] Cycloaddition of Ketenes with N-Benzoyldiazenes Catalyzed by N-Heterocyclic Carbenes: Mechanism and Enantioselectivity. The Journal of Organic Chemistry, 77(23), 10729-10737. doi:10.1021/jo302044n

Ran, Y., Tang, M., Wang, Y., Wang, Y., Zhang, X., Zhu, Y., … Zhang, W. (2016). Theoretical investigations towards the [4+2] cycloaddition of ketenes with 1-azadienes catalyzed by N -heterocyclic carbenes: mechanism and stereoselectivity. Tetrahedron, 72(35), 5295-5300. doi:10.1016/j.tet.2016.06.057

Jian, T.-Y., Chen, X.-Y., Sun, L.-H., & Ye, S. (2013). N-heterocyclic carbene-catalyzed [4 + 2] cycloaddition of ketenes and 3-aroylcoumarins: highly enantioselective synthesis of dihydrocoumarin-fused dihydropyranones. Org. Biomol. Chem., 11(1), 158-163. doi:10.1039/c2ob26804c

Aurell, M. J., Domingo, L. R., Arnó, M., & Zaragozá, R. J. (2016). A DFT study of the mechanism of NHC catalysed annulation reactions involving α,β-unsaturated acyl azoliums and β-naphthol. Organic & Biomolecular Chemistry, 14(35), 8338-8345. doi:10.1039/c6ob01442a

Domingo, L. R., Zaragozá, R. J., & Arnó, M. (2011). Understanding the cooperative NHC/LA catalysis for stereoselective annulation reactions with homoenolates. A DFT study. Organic & Biomolecular Chemistry, 9(19), 6616. doi:10.1039/c1ob05609c

Domingo, L. R., Zaragozá, R. J., & Arnó, M. (2010). Understanding the mechanism of stereoselective synthesis of cyclopentenes via N-heterocyclic carbene catalyzed reactions of enals with enones. Organic & Biomolecular Chemistry, 8(21), 4884. doi:10.1039/c0ob00088d

R. G. Parr and W.Yang , Density Functional Theory of Atoms and Molecules , Oxford University Press , New York , 1989

Ziegler, T. (1991). Approximate density functional theory as a practical tool in molecular energetics and dynamics. Chemical Reviews, 91(5), 651-667. doi:10.1021/cr00005a001

Becke, A. D. (1993). Density‐functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98(7), 5648-5652. doi:10.1063/1.464913

Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37(2), 785-789. doi:10.1103/physrevb.37.785

W. J. Hehre , L.Radom , P.von R.Schleyer and J. A.Pople , Ab initio Molecular Orbital Theory , Wiley , New York , 1986

Fukui, K. (1970). Formulation of the reaction coordinate. The Journal of Physical Chemistry, 74(23), 4161-4163. doi:10.1021/j100717a029

Gonzalez, C., & Schlegel, H. B. (1990). Reaction path following in mass-weighted internal coordinates. The Journal of Physical Chemistry, 94(14), 5523-5527. doi:10.1021/j100377a021

Gonzalez, C., & Schlegel, H. B. (1991). Improved algorithms for reaction path following: Higher‐order implicit algorithms. The Journal of Chemical Physics, 95(8), 5853-5860. doi:10.1063/1.461606

Zhao, Y., & Truhlar, D. G. (2004). Hybrid Meta Density Functional Theory Methods for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions:  The MPW1B95 and MPWB1K Models and Comparative Assessments for Hydrogen Bonding and van der Waals Interactions. The Journal of Physical Chemistry A, 108(33), 6908-6918. doi:10.1021/jp048147q

Tomasi, J., & Persico, M. (1994). Molecular Interactions in Solution: An Overview of Methods Based on Continuous Distributions of the Solvent. Chemical Reviews, 94(7), 2027-2094. doi:10.1021/cr00031a013

B. Y. Simkin and I.Sheikhet , Quantum Chemical and Statistical Theory of Solutions-A Computational Approach , Ellis Horwood , London , 1995

Cancès, E., Mennucci, B., & Tomasi, J. (1997). A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. The Journal of Chemical Physics, 107(8), 3032-3041. doi:10.1063/1.474659

Cossi, M., Barone, V., Cammi, R., & Tomasi, J. (1996). Ab initio study of solvated molecules: a new implementation of the polarizable continuum model. Chemical Physics Letters, 255(4-6), 327-335. doi:10.1016/0009-2614(96)00349-1

Barone, V., Cossi, M., & Tomasi, J. (1998). Geometry optimization of molecular structures in solution by the polarizable continuum model. Journal of Computational Chemistry, 19(4), 404-417. doi:10.1002/(sici)1096-987x(199803)19:4<404::aid-jcc3>3.0.co;2-w

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record