Mostrar el registro sencillo del ítem
dc.contributor.author | Behl, Ramandeep | es_ES |
dc.contributor.author | Cordero Barbero, Alicia | es_ES |
dc.contributor.author | Torregrosa Sánchez, Juan Ramón | es_ES |
dc.contributor.author | Alshomrani, Ali Saleh | es_ES |
dc.date.accessioned | 2019-09-18T20:01:20Z | |
dc.date.available | 2019-09-18T20:01:20Z | |
dc.date.issued | 2018 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/126048 | |
dc.description.abstract | [EN] In this manuscript, a new type of study regarding the iterative methods for solving nonlinear models is presented. The goal of this work is to design a new fourth-order optimal family of two-step iterative schemes, with the flexibility through weight function/s or free parameter/s at both substeps, as well as small residual errors and asymptotic error constants. In addition, we generalize these schemes to nonlinear systems preserving the order of convergence. Regarding the applicability of the proposed techniques, we choose some real-world problems, namely chemical fractional conversion and the trajectory of an electron in the air gap between two parallel plates, in order to study the multi-factor effect, fractional conversion of species in a chemical reactor, Hammerstein integral equation, and a boundary value problem. Moreover, we find that our proposed schemes run better than or equal to the existing ones in the literature. | es_ES |
dc.description.sponsorship | This research was partially supported by Ministerio de Economia y Competitividad MTM2014-52016-C2-2-P (Spain) and by Generalitat Valenciana PROMETEO/2016/089 (Spain). | |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Mathematics | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Nonlinear equations | es_ES |
dc.subject | Local convergence analysis | es_ES |
dc.subject | Order of convergence | es_ES |
dc.subject | Newton's method | es_ES |
dc.subject | Multi-point iterative methods | es_ES |
dc.subject | Computational order of convergence | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | New iterative methods for solving nonlinear problems with one and several unknowns | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/math6120296 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F089/ES/Resolución de ecuaciones y sistemas no lineales mediante técnicas iterativas: análisis dinámico y aplicaciones/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2014-52016-C2-2-P/ES/DISEÑO DE METODOS ITERATIVOS EFICIENTES PARA RESOLVER PROBLEMAS NO LINEALES: CONVERGENCIA, COMPORTAMIENTO DINAMICO Y APLICACIONES. ECUACIONES MATRICIALES./ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Behl, R.; Cordero Barbero, A.; Torregrosa Sánchez, JR.; Alshomrani, AS. (2018). New iterative methods for solving nonlinear problems with one and several unknowns. Mathematics. 6(12). https://doi.org/10.3390/math6120296 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.3390/math6120296 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 6 | es_ES |
dc.description.issue | 12 | es_ES |
dc.identifier.eissn | 2227-7390 | es_ES |
dc.relation.pasarela | S\374653 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Economía y Empresa | es_ES |