- -

Processing and Characterization of Environmentally Friendly Composites from Biobased Polyethylene and Natural Fillers from Thyme Herbs

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Processing and Characterization of Environmentally Friendly Composites from Biobased Polyethylene and Natural Fillers from Thyme Herbs

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Montanes, Nestor es_ES
dc.contributor.author Garcia-Sanoguera, David es_ES
dc.contributor.author Segui Llinares, Vicente Jesús es_ES
dc.contributor.author Fenollar, Octavio es_ES
dc.contributor.author Boronat, Teodomiro es_ES
dc.date.accessioned 2019-09-19T20:00:34Z
dc.date.available 2019-09-19T20:00:34Z
dc.date.issued 2018 es_ES
dc.identifier.issn 1566-2543 es_ES
dc.identifier.uri http://hdl.handle.net/10251/126096
dc.description.abstract [EN] The main aim of this research work is to assess the potential of a distillery waste from thyme as multifunctional filler in natural fiber reinforced plastics (NFRP) with biobased polyethylene matrix. Several ethylene-based copolymers with different co-monomers (vinyl alcohol, methyl methacrylate, glycidyl methacrylate and acrylic acid) were used as compatibilizer agents to overcome the lack of compatibility between the highly hydrophobic matrix and the highly hydrophilic lignocellulosic filler. The effect of the compatibilizer type and amount, as well as the lignocellulosic filler content was followed by thermal, mechanical, morphological and rheological characterizations. In addition to the typical filler effect, thyme also provides a remarkable increase in thermal stability at moderate temperatures with a positive effect on widening the processing window. The compatibilizer agent that offers best balanced properties is the glycidyl methacrylate copolymer with a noticeable increase in stiffness, flexural and tensile strength. Regarding processability, the viscosity increases with the filler content. This is highly important at low shear rates but the effect is almost negligible at high shear rates typical of injection molding processes. es_ES
dc.description.sponsorship This research was supported by the Ministry of Economy and Competitiveness-MINECO through the grant number MAT2014-59242-C2-1-R. Authors also wish to thank "Licores Sinc, S.A." for kindly supplying the Thymus moroderi wastes. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Journal of Polymers and the Environment es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Natural fiber composites es_ES
dc.subject Particle reinforcement es_ES
dc.subject Mechanical properties es_ES
dc.subject Thermal properties es_ES
dc.subject Thyme es_ES
dc.subject.classification INGENIERIA DE LOS PROCESOS DE FABRICACION es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.title Processing and Characterization of Environmentally Friendly Composites from Biobased Polyethylene and Natural Fillers from Thyme Herbs es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10924-017-1025-2 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2014-59242-C2-1-R/ES/TECNICAS AVANZADAS DE PROCESADO PARA SISTEMAS ACTIVOS ENCAPSULADOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials es_ES
dc.description.bibliographicCitation Montanes, N.; Garcia-Sanoguera, D.; Segui Llinares, VJ.; Fenollar, O.; Boronat, T. (2018). Processing and Characterization of Environmentally Friendly Composites from Biobased Polyethylene and Natural Fillers from Thyme Herbs. Journal of Polymers and the Environment. 26(3):1218-1230. https://doi.org/10.1007/s10924-017-1025-2 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1007/s10924-017-1025-2 es_ES
dc.description.upvformatpinicio 1218 es_ES
dc.description.upvformatpfin 1230 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 26 es_ES
dc.description.issue 3 es_ES
dc.relation.pasarela S\338146 es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.description.references Kord B, Ravanfar P, Ayrilmis N (2016) Influence of organically modified nanoclay on thermal and combustion properties of bagasse reinforced HDPE nanocomposites. J Polym Environ. doi: 10.1007/s10924-016-0897-x es_ES
dc.description.references Satyanarayana KG, Arizaga GGC, Wypych F (2009) Biodegradable composites based on lignocellulosic fibers—An overview. Prog Polym Sci 34(9):982–1021 es_ES
dc.description.references Boronat T et al (2015) Development of a biocomposite based on green polyethylene biopolymer and eggshell. Mater Des 68:177–185 es_ES
dc.description.references Carbonell-Verdú A et al (2015) Development of slate fiber reinforced high density polyethylene composites for injection molding. Compos Part B Eng 69:460–466 es_ES
dc.description.references Alves C et al (2010) Ecodesign of automotive components making use of natural jute fiber composites. J Cleaner Prod 18(4):313–327 es_ES
dc.description.references Ashori A (2008) Wood–plastic composites as promising green-composites for automotive industries!. Bioresour Technol 99(11):4661–4667 es_ES
dc.description.references Shalwan A, Yousif BF (2013) In state of art: mechanical and tribological behaviour of polymeric composites based on natural fibres. Mater Des 48:14–24 es_ES
dc.description.references Farag MM (2008) Quantitative methods of materials substitution: application to automotive components. Mater Des 29(2):374–380 es_ES
dc.description.references John MJ, Thomas S (2008) Biofibres and biocomposites. Carbohydr Polym 71(3):343–364 es_ES
dc.description.references Christian SJ, Billington SL (2009) Sustainable biocomposites for construction. In: Proceedings for Composites & Polycon. American Composites Manufacturers Association, Tampa, FL USA es_ES
dc.description.references Berthet M-A et al (2016) Torrefaction treatment of lignocellulosic fibres for improving fibre/matrix adhesion in a biocomposite. Mater Des 92:223–232 es_ES
dc.description.references Yang H-S et al (2006) Water absorption behavior and mechanical properties of lignocellulosic filler–polyolefin bio-composites. Compos Struct 72(4):429–437 es_ES
dc.description.references Syed MA et al (2011) Studies on the physico-mechanical, thermal, and morphological behaviors of high density polyethylene/coleus spent green composites. J Appl Polym Sci 119(4):1889–1895 es_ES
dc.description.references Ferrero B et al (2013) Green composites based on wheat gluten matrix and Posidonia oceanica waste fibers as reinforcements. Polym Compos 34(10):1663–1669 es_ES
dc.description.references Matkó S et al (2005) Flame retardancy of biodegradable polymers and biocomposites. Polym Degrad Stab 88(1):138–145 es_ES
dc.description.references Thakur MK et al (2016) Synthesis and applications of biodegradable soy based graft copolymers: a review. Acs Sustain Chem Eng 4(1):1–17 es_ES
dc.description.references Colom X et al (2003) Effects of different treatments on the interface of HDPE/lignocellulosic fiber composites. Compos Sci Technol 63(2):161–169 es_ES
dc.description.references Habibi Y et al (2008) Processing and characterization of reinforced polyethylene composites made with lignocellulosic fibers from Egyptian agro-industrial residues. Compos Sci Technol 68(7–8):1877–1885 es_ES
dc.description.references Faruk O et al (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37(11):1552–1596 es_ES
dc.description.references Avérous L, Le Digabel F (2006) Properties of biocomposites based on lignocellulosic fillers. Carbohydr Polym 66(4):480–493 es_ES
dc.description.references Satapathy S, Kothapalli RVS (2017) Mechanical, dynamic mechanical and thermal properties of banana fiber/recycled high density polyethylene biocomposites filled with flyash cenospheres. J Polym Environ. doi: 10.1007/s10924-017-0938-0 es_ES
dc.description.references Elkhaoulani A et al (2013) Mechanical and thermal properties of polymer composite based on natural fibers: Moroccan hemp fibers/polypropylene. Mater Des 49:203–208 es_ES
dc.description.references Arib RMN et al (2006) Mechanical properties of pineapple leaf fibre reinforced polypropylene composites. Mater Des 27(5):391–396 es_ES
dc.description.references Olumuyiwa AJ, Isaac TS, Samuel SO (2012) Study of mechanical behaviour of coconut shell reinforced polymer matrix composite. J Miner Mater Charact Eng 11(08):774 es_ES
dc.description.references Yang H-S et al (2007) Effect of different compatibilizing agents on the mechanical properties of lignocellulosic material filled polyethylene bio-composites. Compos Struct 79(3):369–375 es_ES
dc.description.references Ferrero B et al (2015) Development of natural fiber-reinforced plastics (NFRP) based on biobased polyethylene and waste fibers from Posidonia oceanica seaweed. Polym Compos 36(8):1378–1385 es_ES
dc.description.references Simkovic I et al (2017) Composite films prepared from agricultural by-products. Carbohydr Polym 156:77–85 es_ES
dc.description.references Ruiz-Navajas Y et al, (2012) Chemical characterization and antibacterial activity of Thymus moroderi and Thymus piperella essential oils, two Thymus endemic species from southeast of Spain. Food Control 27(2):294–299 es_ES
dc.description.references Ruiz-Navajas Y et al (2013) In vitro antibacterial and antioxidant properties of chitosan edible films incorporated with Thymus moroderi or Thymus piperella essential oils. Food Control 30(2):386–392 es_ES
dc.description.references Díaz-García MC et al (2015) Production of an anthocyanin-rich food colourant from Thymus moroderi and its application in foods. J Sci Food Agric 95(6):1283–1293 es_ES
dc.description.references Perdones Á, Chiralt A, Vargas M (2016) Properties of film-forming dispersions and films based on chitosan containing basil or thyme essential oil. Food Hydrocoll 57:271–279 es_ES
dc.description.references Meybodi NM, Ebrahimi MT, Mortazavian AM (2016) Ethnic fermented foods and beverage of Iran. In: Tamang JP (ed) Ethnic fermented foods and alcoholic beverages of Asia. Springer, India, pp 309–322 es_ES
dc.description.references Arsenijević J et al (2016) Bioactivity of herbal tea of Hungarian thyme based on the composition of volatiles and polyphenolics. Ind Crops Prod 89:14–20 es_ES
dc.description.references Boutoial K et al (2013) Effect of feeding goats with distilled and non-distilled thyme leaves (Thymus zygis subp. gracilis) on milk and cheese properties. J Dairy Res 80(04):448–456 es_ES
dc.description.references Bauermann U, Thomann R (2012) By-products of medicinal and aromatic plant processing—A useful resource for antioxidants. Zeitschrift Fur Arznei- Gewurzpflanzen 17(2):88–92 es_ES
dc.description.references Kaya H et al (2013) Effects of dietary supplementation of essential oils and vitamin e on performance, egg quality and Escherichia coli count in excreta. Indian J Animal Res 47(6):515–520 es_ES
dc.description.references Tserki V et al (2005) Novel biodegradable composites based on treated lignocellulosic waste flour as filler. Part I. Surface chemical modification and characterization of waste flour. Compos Part A 36(7):965–974 es_ES
dc.description.references Sailaja R (2005) Mechanical properties of esterified tapioca starch–LDPE blends using LDPE-co-glycidyl methacrylate as compatibilizer. Polym Int 54(2):286–296 es_ES
dc.description.references Revert A et al (2015) Upgrading brewer’s spent grain as functional filler in polypropylene matrix. Polym Compos. doi: 10.1002/pc.23558 es_ES
dc.description.references ISO (2012) Plastics—Determination of tensile properties—Part 1: General principles es_ES
dc.description.references ISO (2011) Plastics. determination of flexural properties es_ES
dc.description.references ISO (2003) Plastics and ebonite. Determination fo indentation hardness by means of durometer (Shore Hardness) es_ES
dc.description.references ISO (2010) Plastics. Determination of charpy impact properties—Part 1: Non-instrumented impact test es_ES
dc.description.references ISO (2014) Plastics—Determination of the fluidity of plastics using capillary and slit-die rheometers es_ES
dc.description.references Balart JF et al (2016) Processing and characterization of high environmental efficiency composites based on PLA and hazelnut shell flour (HSF) with biobased plasticizers derived from epoxidized linseed oil (ELO). Compos Part B 86:168–177 es_ES
dc.description.references Balart JF et al (2016) Manufacturing and properties of biobased thermoplastic composites from poly(lactid acid) and hazelnut shell wastes. Polym Compos. doi: 10.1002/pc.24007 es_ES
dc.description.references Sanchez-Jimenez PE et al (2012) Nanoclay nucleation effect in the thermal stabilization of a polymer nanocomposite: a kinetic mechanism change. J Phys Chem C 116(21):11797–11807 es_ES
dc.description.references Perinovic S, Andricic B, Erceg M (2010) Thermal properties of poly(L-lactide)/olive stone flour composites. Thermochim Acta 510(1–2):97–102 es_ES
dc.description.references Salasinska K, Ryszkowska J (2012) Natural fibre composites from polyethylene waste and hazelnut shell: dimensional stability, physical, mechanical and thermal properties. Compos Interfaces 19(5):321–332 es_ES
dc.description.references Yussuf AA, Massoumi I, Hassan A (2010) Comparison of polylactic acid/kenaf and polylactic acid/rise husk composites: the influence of the natural fibers on the mechanical, thermal and biodegradability properties. J Environ Polym Degr 18(3):422–429 es_ES
dc.description.references Hornsby PR, Hinrichsen E, Tarverdi K (1997) Preparation and properties of polypropylene composites reinforced with wheat and flax straw fibres: part I fibre characterization. J Mater Sci 32(2):443–449 es_ES
dc.description.references Adhikary KB, Pang SS, Staiger MP (2008) Dimensional stability and mechanical behaviour of wood-plastic composites based on recycled and virgin high-density polyethylene (HDPE). Compos Part B 39(5):807–815 es_ES
dc.description.references Rahman MR et al (2009) Mechanical properties of polypropylene composites reinforced with chemically treated Abaca. Compos Part A 40(4):511–517 es_ES
dc.description.references Ruiz-Navajas Y et al (2013) In vitro antioxidant and antifungal properties of essential oils obtained from aromatic herbs endemic to the southeast of Spain. J Food Protect 76(7):1218–1225 es_ES
dc.description.references Ruseckaite RA, Jiménez A (2003) Thermal degradation of mixtures of polycaprolactone with cellulose derivatives. Polym Degrad Stab 81(2):353–358 es_ES
dc.description.references Williams ML, Landel RF, Ferry JD (1955) Mechanical properties of substances of high molecular weight. 19. The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J Am Chem Soc 77(14):3701–3707 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem