Mostrar el registro sencillo del ítem
dc.contributor.author | Montanes, Nestor | es_ES |
dc.contributor.author | Garcia-Sanoguera, David | es_ES |
dc.contributor.author | Segui Llinares, Vicente Jesús | es_ES |
dc.contributor.author | Fenollar, Octavio | es_ES |
dc.contributor.author | Boronat, Teodomiro | es_ES |
dc.date.accessioned | 2019-09-19T20:00:34Z | |
dc.date.available | 2019-09-19T20:00:34Z | |
dc.date.issued | 2018 | es_ES |
dc.identifier.issn | 1566-2543 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/126096 | |
dc.description.abstract | [EN] The main aim of this research work is to assess the potential of a distillery waste from thyme as multifunctional filler in natural fiber reinforced plastics (NFRP) with biobased polyethylene matrix. Several ethylene-based copolymers with different co-monomers (vinyl alcohol, methyl methacrylate, glycidyl methacrylate and acrylic acid) were used as compatibilizer agents to overcome the lack of compatibility between the highly hydrophobic matrix and the highly hydrophilic lignocellulosic filler. The effect of the compatibilizer type and amount, as well as the lignocellulosic filler content was followed by thermal, mechanical, morphological and rheological characterizations. In addition to the typical filler effect, thyme also provides a remarkable increase in thermal stability at moderate temperatures with a positive effect on widening the processing window. The compatibilizer agent that offers best balanced properties is the glycidyl methacrylate copolymer with a noticeable increase in stiffness, flexural and tensile strength. Regarding processability, the viscosity increases with the filler content. This is highly important at low shear rates but the effect is almost negligible at high shear rates typical of injection molding processes. | es_ES |
dc.description.sponsorship | This research was supported by the Ministry of Economy and Competitiveness-MINECO through the grant number MAT2014-59242-C2-1-R. Authors also wish to thank "Licores Sinc, S.A." for kindly supplying the Thymus moroderi wastes. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Journal of Polymers and the Environment | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Natural fiber composites | es_ES |
dc.subject | Particle reinforcement | es_ES |
dc.subject | Mechanical properties | es_ES |
dc.subject | Thermal properties | es_ES |
dc.subject | Thyme | es_ES |
dc.subject.classification | INGENIERIA DE LOS PROCESOS DE FABRICACION | es_ES |
dc.subject.classification | CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA | es_ES |
dc.title | Processing and Characterization of Environmentally Friendly Composites from Biobased Polyethylene and Natural Fillers from Thyme Herbs | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s10924-017-1025-2 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2014-59242-C2-1-R/ES/TECNICAS AVANZADAS DE PROCESADO PARA SISTEMAS ACTIVOS ENCAPSULADOS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials | es_ES |
dc.description.bibliographicCitation | Montanes, N.; Garcia-Sanoguera, D.; Segui Llinares, VJ.; Fenollar, O.; Boronat, T. (2018). Processing and Characterization of Environmentally Friendly Composites from Biobased Polyethylene and Natural Fillers from Thyme Herbs. Journal of Polymers and the Environment. 26(3):1218-1230. https://doi.org/10.1007/s10924-017-1025-2 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1007/s10924-017-1025-2 | es_ES |
dc.description.upvformatpinicio | 1218 | es_ES |
dc.description.upvformatpfin | 1230 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 26 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.pasarela | S\338146 | es_ES |
dc.contributor.funder | Ministerio de Economía, Industria y Competitividad | es_ES |
dc.description.references | Kord B, Ravanfar P, Ayrilmis N (2016) Influence of organically modified nanoclay on thermal and combustion properties of bagasse reinforced HDPE nanocomposites. J Polym Environ. doi: 10.1007/s10924-016-0897-x | es_ES |
dc.description.references | Satyanarayana KG, Arizaga GGC, Wypych F (2009) Biodegradable composites based on lignocellulosic fibers—An overview. Prog Polym Sci 34(9):982–1021 | es_ES |
dc.description.references | Boronat T et al (2015) Development of a biocomposite based on green polyethylene biopolymer and eggshell. Mater Des 68:177–185 | es_ES |
dc.description.references | Carbonell-Verdú A et al (2015) Development of slate fiber reinforced high density polyethylene composites for injection molding. Compos Part B Eng 69:460–466 | es_ES |
dc.description.references | Alves C et al (2010) Ecodesign of automotive components making use of natural jute fiber composites. J Cleaner Prod 18(4):313–327 | es_ES |
dc.description.references | Ashori A (2008) Wood–plastic composites as promising green-composites for automotive industries!. Bioresour Technol 99(11):4661–4667 | es_ES |
dc.description.references | Shalwan A, Yousif BF (2013) In state of art: mechanical and tribological behaviour of polymeric composites based on natural fibres. Mater Des 48:14–24 | es_ES |
dc.description.references | Farag MM (2008) Quantitative methods of materials substitution: application to automotive components. Mater Des 29(2):374–380 | es_ES |
dc.description.references | John MJ, Thomas S (2008) Biofibres and biocomposites. Carbohydr Polym 71(3):343–364 | es_ES |
dc.description.references | Christian SJ, Billington SL (2009) Sustainable biocomposites for construction. In: Proceedings for Composites & Polycon. American Composites Manufacturers Association, Tampa, FL USA | es_ES |
dc.description.references | Berthet M-A et al (2016) Torrefaction treatment of lignocellulosic fibres for improving fibre/matrix adhesion in a biocomposite. Mater Des 92:223–232 | es_ES |
dc.description.references | Yang H-S et al (2006) Water absorption behavior and mechanical properties of lignocellulosic filler–polyolefin bio-composites. Compos Struct 72(4):429–437 | es_ES |
dc.description.references | Syed MA et al (2011) Studies on the physico-mechanical, thermal, and morphological behaviors of high density polyethylene/coleus spent green composites. J Appl Polym Sci 119(4):1889–1895 | es_ES |
dc.description.references | Ferrero B et al (2013) Green composites based on wheat gluten matrix and Posidonia oceanica waste fibers as reinforcements. Polym Compos 34(10):1663–1669 | es_ES |
dc.description.references | Matkó S et al (2005) Flame retardancy of biodegradable polymers and biocomposites. Polym Degrad Stab 88(1):138–145 | es_ES |
dc.description.references | Thakur MK et al (2016) Synthesis and applications of biodegradable soy based graft copolymers: a review. Acs Sustain Chem Eng 4(1):1–17 | es_ES |
dc.description.references | Colom X et al (2003) Effects of different treatments on the interface of HDPE/lignocellulosic fiber composites. Compos Sci Technol 63(2):161–169 | es_ES |
dc.description.references | Habibi Y et al (2008) Processing and characterization of reinforced polyethylene composites made with lignocellulosic fibers from Egyptian agro-industrial residues. Compos Sci Technol 68(7–8):1877–1885 | es_ES |
dc.description.references | Faruk O et al (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37(11):1552–1596 | es_ES |
dc.description.references | Avérous L, Le Digabel F (2006) Properties of biocomposites based on lignocellulosic fillers. Carbohydr Polym 66(4):480–493 | es_ES |
dc.description.references | Satapathy S, Kothapalli RVS (2017) Mechanical, dynamic mechanical and thermal properties of banana fiber/recycled high density polyethylene biocomposites filled with flyash cenospheres. J Polym Environ. doi: 10.1007/s10924-017-0938-0 | es_ES |
dc.description.references | Elkhaoulani A et al (2013) Mechanical and thermal properties of polymer composite based on natural fibers: Moroccan hemp fibers/polypropylene. Mater Des 49:203–208 | es_ES |
dc.description.references | Arib RMN et al (2006) Mechanical properties of pineapple leaf fibre reinforced polypropylene composites. Mater Des 27(5):391–396 | es_ES |
dc.description.references | Olumuyiwa AJ, Isaac TS, Samuel SO (2012) Study of mechanical behaviour of coconut shell reinforced polymer matrix composite. J Miner Mater Charact Eng 11(08):774 | es_ES |
dc.description.references | Yang H-S et al (2007) Effect of different compatibilizing agents on the mechanical properties of lignocellulosic material filled polyethylene bio-composites. Compos Struct 79(3):369–375 | es_ES |
dc.description.references | Ferrero B et al (2015) Development of natural fiber-reinforced plastics (NFRP) based on biobased polyethylene and waste fibers from Posidonia oceanica seaweed. Polym Compos 36(8):1378–1385 | es_ES |
dc.description.references | Simkovic I et al (2017) Composite films prepared from agricultural by-products. Carbohydr Polym 156:77–85 | es_ES |
dc.description.references | Ruiz-Navajas Y et al, (2012) Chemical characterization and antibacterial activity of Thymus moroderi and Thymus piperella essential oils, two Thymus endemic species from southeast of Spain. Food Control 27(2):294–299 | es_ES |
dc.description.references | Ruiz-Navajas Y et al (2013) In vitro antibacterial and antioxidant properties of chitosan edible films incorporated with Thymus moroderi or Thymus piperella essential oils. Food Control 30(2):386–392 | es_ES |
dc.description.references | Díaz-García MC et al (2015) Production of an anthocyanin-rich food colourant from Thymus moroderi and its application in foods. J Sci Food Agric 95(6):1283–1293 | es_ES |
dc.description.references | Perdones Á, Chiralt A, Vargas M (2016) Properties of film-forming dispersions and films based on chitosan containing basil or thyme essential oil. Food Hydrocoll 57:271–279 | es_ES |
dc.description.references | Meybodi NM, Ebrahimi MT, Mortazavian AM (2016) Ethnic fermented foods and beverage of Iran. In: Tamang JP (ed) Ethnic fermented foods and alcoholic beverages of Asia. Springer, India, pp 309–322 | es_ES |
dc.description.references | Arsenijević J et al (2016) Bioactivity of herbal tea of Hungarian thyme based on the composition of volatiles and polyphenolics. Ind Crops Prod 89:14–20 | es_ES |
dc.description.references | Boutoial K et al (2013) Effect of feeding goats with distilled and non-distilled thyme leaves (Thymus zygis subp. gracilis) on milk and cheese properties. J Dairy Res 80(04):448–456 | es_ES |
dc.description.references | Bauermann U, Thomann R (2012) By-products of medicinal and aromatic plant processing—A useful resource for antioxidants. Zeitschrift Fur Arznei- Gewurzpflanzen 17(2):88–92 | es_ES |
dc.description.references | Kaya H et al (2013) Effects of dietary supplementation of essential oils and vitamin e on performance, egg quality and Escherichia coli count in excreta. Indian J Animal Res 47(6):515–520 | es_ES |
dc.description.references | Tserki V et al (2005) Novel biodegradable composites based on treated lignocellulosic waste flour as filler. Part I. Surface chemical modification and characterization of waste flour. Compos Part A 36(7):965–974 | es_ES |
dc.description.references | Sailaja R (2005) Mechanical properties of esterified tapioca starch–LDPE blends using LDPE-co-glycidyl methacrylate as compatibilizer. Polym Int 54(2):286–296 | es_ES |
dc.description.references | Revert A et al (2015) Upgrading brewer’s spent grain as functional filler in polypropylene matrix. Polym Compos. doi: 10.1002/pc.23558 | es_ES |
dc.description.references | ISO (2012) Plastics—Determination of tensile properties—Part 1: General principles | es_ES |
dc.description.references | ISO (2011) Plastics. determination of flexural properties | es_ES |
dc.description.references | ISO (2003) Plastics and ebonite. Determination fo indentation hardness by means of durometer (Shore Hardness) | es_ES |
dc.description.references | ISO (2010) Plastics. Determination of charpy impact properties—Part 1: Non-instrumented impact test | es_ES |
dc.description.references | ISO (2014) Plastics—Determination of the fluidity of plastics using capillary and slit-die rheometers | es_ES |
dc.description.references | Balart JF et al (2016) Processing and characterization of high environmental efficiency composites based on PLA and hazelnut shell flour (HSF) with biobased plasticizers derived from epoxidized linseed oil (ELO). Compos Part B 86:168–177 | es_ES |
dc.description.references | Balart JF et al (2016) Manufacturing and properties of biobased thermoplastic composites from poly(lactid acid) and hazelnut shell wastes. Polym Compos. doi: 10.1002/pc.24007 | es_ES |
dc.description.references | Sanchez-Jimenez PE et al (2012) Nanoclay nucleation effect in the thermal stabilization of a polymer nanocomposite: a kinetic mechanism change. J Phys Chem C 116(21):11797–11807 | es_ES |
dc.description.references | Perinovic S, Andricic B, Erceg M (2010) Thermal properties of poly(L-lactide)/olive stone flour composites. Thermochim Acta 510(1–2):97–102 | es_ES |
dc.description.references | Salasinska K, Ryszkowska J (2012) Natural fibre composites from polyethylene waste and hazelnut shell: dimensional stability, physical, mechanical and thermal properties. Compos Interfaces 19(5):321–332 | es_ES |
dc.description.references | Yussuf AA, Massoumi I, Hassan A (2010) Comparison of polylactic acid/kenaf and polylactic acid/rise husk composites: the influence of the natural fibers on the mechanical, thermal and biodegradability properties. J Environ Polym Degr 18(3):422–429 | es_ES |
dc.description.references | Hornsby PR, Hinrichsen E, Tarverdi K (1997) Preparation and properties of polypropylene composites reinforced with wheat and flax straw fibres: part I fibre characterization. J Mater Sci 32(2):443–449 | es_ES |
dc.description.references | Adhikary KB, Pang SS, Staiger MP (2008) Dimensional stability and mechanical behaviour of wood-plastic composites based on recycled and virgin high-density polyethylene (HDPE). Compos Part B 39(5):807–815 | es_ES |
dc.description.references | Rahman MR et al (2009) Mechanical properties of polypropylene composites reinforced with chemically treated Abaca. Compos Part A 40(4):511–517 | es_ES |
dc.description.references | Ruiz-Navajas Y et al (2013) In vitro antioxidant and antifungal properties of essential oils obtained from aromatic herbs endemic to the southeast of Spain. J Food Protect 76(7):1218–1225 | es_ES |
dc.description.references | Ruseckaite RA, Jiménez A (2003) Thermal degradation of mixtures of polycaprolactone with cellulose derivatives. Polym Degrad Stab 81(2):353–358 | es_ES |
dc.description.references | Williams ML, Landel RF, Ferry JD (1955) Mechanical properties of substances of high molecular weight. 19. The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J Am Chem Soc 77(14):3701–3707 | es_ES |