CalatayudGregori, J.; Cortés, J.; JornetSanz, M. (2018). The damped pendulum random differential equation: A comprehensive stochastic analysis via the computation of the probability density function. Physica A Statistical Mechanics and its Applications. 512:261279. https://doi.org/10.1016/j.physa.2018.08.024
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/126097
Title:  The damped pendulum random differential equation: A comprehensive stochastic analysis via the computation of the probability density function  
Author:  CalatayudGregori, Julia JornetSanz, Marc  
UPV Unit: 


Issued date: 


Abstract: 
[EN] This paper deals with the damped pendulum random differential equation: (X) over double dot(t)+2 omega(0)xi(X) over dot(t) + omega X2(0)(t) = Y(t), t is an element of [0, T], with initial conditions X(0) = X0 and ...[+]


Subjects: 


Copyrigths:  Embargado  
Source: 


DOI: 


Publisher: 


Publisher version:  http://doi.org/10.1016/j.physa.2018.08.024  
Thanks: 
This work has been supported by the Spanish Ministerio de Economia y Competitividad grant MTM201789664P. Marc Jornet acknowledges the doctorate scholarship granted by Programa de Ayudas de Investigacion y Desarrollo ...[+]


Type: 
