- -

Computer-aided Glaucoma Diagnosis using Stochastic Watershed Transformation on Single Fundus Images

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Computer-aided Glaucoma Diagnosis using Stochastic Watershed Transformation on Single Fundus Images

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Díaz-Pinto, Andrés Yesid es_ES
dc.contributor.author Morales, Sandra es_ES
dc.contributor.author Naranjo Ornedo, Valeriana es_ES
dc.contributor.author Navea, Amparo es_ES
dc.date.accessioned 2019-09-22T20:02:27Z
dc.date.available 2019-09-22T20:02:27Z
dc.date.issued 2019 es_ES
dc.identifier.uri http://hdl.handle.net/10251/126176
dc.description.abstract [EN] Glaucoma is a chronic eye disease and one of the major causes of permanent blindness. Since it does not show initial symptoms, early diagnosis is important to limit its progression. This paper presents an automatic optic nerve characterization algorithm for glaucoma diagnosis based only on retinal fundus images. For optic cup segmentation, we used a new method based on the stochastic watershed transformation applied on the YIQ colour space to extract clinical indicators such as the Cup/Disc ratio, the area Cup/Disc ratio and the ISNT rule. Afterwards, an assessment between normal and glaucomatous fundus images is performed. The proposed algorithm was evaluated on 6 different (private and public) databases containing 723 images (377 normal and 346 glaucomatous images) which achieved a specificity and sensitivity of 0.674 and 0.675, respectively. Moreover, an F-score of 0.770 was obtained when evaluating this method on the publicly available database Drishti-GS1. A comparison of the proposed work with other state-of-the-art methods demonstrates the robustness of the proposed algorithm; because it was tested using images from different databases with high variability, which is a common issue in this area. Additional comparisons with existing works for cup segmentation, that use the publicly available database Drishti-GS1, are also presented in this paper. es_ES
dc.description.sponsorship The authors would like to thank K. Narasimhan from SASTRA University for facilitating access to their database and gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan V GPU used for this research. This work was supported by the Project GALAHAD [H2020-ICT-2016-2017, 732613]. In particular, the work of Andres Diaz-Pinto has been supported by the Generalitat Valenciana under the scholarship Santiago Grisolia [GRISOLIA/2015/027]. es_ES
dc.language Inglés es_ES
dc.publisher American Scientific Publishers es_ES
dc.relation.ispartof Journal of Medical Imaging and Health Informatics (Online) es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Glaucoma es_ES
dc.subject Fundus Images es_ES
dc.subject Stochastic Watershed es_ES
dc.subject CDR es_ES
dc.subject ISNT rule es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Computer-aided Glaucoma Diagnosis using Stochastic Watershed Transformation on Single Fundus Images es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1166/jmihi.2019.2721 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GRISOLIA%2F2015%2F027/
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/732613/EU/Glaucoma – Advanced, LAbel-free High resolution Automated OCT Diagnostics/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Díaz-Pinto, AY.; Morales, S.; Naranjo Ornedo, V.; Navea, A. (2019). Computer-aided Glaucoma Diagnosis using Stochastic Watershed Transformation on Single Fundus Images. Journal of Medical Imaging and Health Informatics (Online). 9(6):1057-1065. https://doi.org/10.1166/jmihi.2019.2721 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1166/jmihi.2019.2721 es_ES
dc.description.upvformatpinicio 1057 es_ES
dc.description.upvformatpfin 1065 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 6 es_ES
dc.identifier.eissn 2156-7026 es_ES
dc.relation.pasarela S\379695 es_ES
dc.contributor.funder Nvidia
dc.contributor.funder Generalitat Valenciana
dc.contributor.funder European Commission


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem