Bonet Solves, JA. (2018). THE FRECHET SCHWARTZ ALGEBRA OF UNIFORMLY CONVERGENT DIRICHLET SERIES. Proceedings of the Edinburgh Mathematical Society. 61(4):933-942. https://doi.org/10.1017/S0013091517000438
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/126487
Title:
|
THE FRECHET SCHWARTZ ALGEBRA OF UNIFORMLY CONVERGENT DIRICHLET SERIES
|
Author:
|
Bonet Solves, José Antonio
|
UPV Unit:
|
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
|
Issued date:
|
|
Abstract:
|
[EN] The algebra of all Dirichlet series that are uniformly convergent in the half-plane of complex numbers with positive real part is investigated. When it is endowed with its natural locally convex topology, it is a ...[+]
[EN] The algebra of all Dirichlet series that are uniformly convergent in the half-plane of complex numbers with positive real part is investigated. When it is endowed with its natural locally convex topology, it is a non-nuclear Frechet Schwartz space with basis. Moreover, it is a locally multiplicative algebra but not a Q-algebra. Composition operators on this space are also studied.
[-]
|
Subjects:
|
Dirichlet series
,
Abscissas of convergence
,
Frechet spaces
,
Composition operators
,
Topological algebras
|
Copyrigths:
|
Reserva de todos los derechos
|
Source:
|
Proceedings of the Edinburgh Mathematical Society. (issn:
0013-0915
)
|
DOI:
|
10.1017/S0013091517000438
|
Publisher:
|
Cambridge University Press
|
Publisher version:
|
http://doi.org/10.1017/S0013091517000438
|
Project ID:
|
info:eu-repo/grantAgreement/MINECO//MTM2016-76647-P/ES/ANALISIS FUNCIONAL, TEORIA DE OPERADORES Y ANALISIS TIEMPO-FRECUENCIA/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F102/ES/ANALISIS FUNCIONAL, TEORIA DE OPERADORES Y APLICACIONES/
info:eu-repo/grantAgreement/MINECO//MTM2013-43540-P/ES/METODOS DEL ANALISIS FUNCIONAL Y TEORIA DE OPERADORES/
|
Thanks:
|
This research was partially supported by the projects MTM2013-43540-P and MTM2016-76647-P. This paper was written during the author's stay at the Katholische Universitat Eichstatt-Ingolstadt (Germany). The support of the ...[+]
This research was partially supported by the projects MTM2013-43540-P and MTM2016-76647-P. This paper was written during the author's stay at the Katholische Universitat Eichstatt-Ingolstadt (Germany). The support of the Alexander von Humboldt Foundation is greatly appreciated.
[-]
|
Type:
|
Artículo
|