Mostrar el registro sencillo del ítem
dc.contributor.author | Camacho-Fernández, Carolina | es_ES |
dc.contributor.author | Hervás, David | es_ES |
dc.contributor.author | Rivas-Sendra, Alba | es_ES |
dc.contributor.author | Marín, Mª Pilar | es_ES |
dc.contributor.author | Seguí-Simarro, Jose M. | es_ES |
dc.date.accessioned | 2019-09-27T10:42:35Z | |
dc.date.available | 2019-09-27T10:42:35Z | |
dc.date.issued | 2018 | es_ES |
dc.identifier.issn | 1746-4811 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/126497 | |
dc.description.abstract | [EN] Background: For in vitro culture of plant and animal cells, one of the critical steps is to adjust the initial cell density. A typical example of this is isolated microspore culture, where specific cell densities have been determined for different species. Out of these ranges, microspore growth is not induced, or is severely reduced. A similar situation occurs in many other plant and animal cell culture systems. Traditionally, researchers have used counting chambers (hemacytometers) to calculate cell densities, but little is still known about their technical advantages. In addition, much less information is available about other, alternative methods. In this work, using isolated eggplant microspore cultures and fluorescent beads (fluorospheres) as experimental systems, we performed a comprehensive comparison of six methods to calculate cell densities: (1) a Neubauer improved hemacytometer, (2) an automated cell counter, (3) a manual-counting method, and three flow cytometry methods based on (4) autofluorescence, (5) propidium iodide staining, and (6) side scattered light (SSC). Results: Our results show that from a technical perspective, hemacytometers are the most reasonable option for cell counting, which may explain their widely spread use. Automated cell counters represent a good compromise between precision and affordability, although with limited accuracy. Finally, the methods based on flow cytometry were, by far, the best in terms of reproducibility and agreement between them, but they showed deficient accuracy and precision. Conclusions: Together, our results show a thorough technical evaluation of each counting method, provide unambiguous arguments to decide which one is the most convenient for the particular case of each laboratory, and in general, shed light into the best way to determine cell densities for in vitro cell cultures. They may have an impact in such a practice not only in the context of microspore culture, but also in any other plant cell culture procedure, or in any process involving particle counting. | es_ES |
dc.description.sponsorship | This work was supported by Grant UPV-FE-2013-7 from Universitat Politecnica de Valencia and Hospital Universitari i Politecnic La Fe to JMSS and MPM, and Grants AGL2014-55177-R and AGL2017-88135-R to JMSS from Spanish Ministerio de Economia y Competitividad (MINECO) jointly funded by FEDER. CCM and ARS are recipients of PhD Fellowships from Generalitat Valenciana and Universitat Politecnica de Valencia, respectively. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer (Biomed Central Ltd.) | es_ES |
dc.relation.ispartof | Plant Methods | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Automated cell counter | es_ES |
dc.subject | Cell counting | es_ES |
dc.subject | Flow cytometry | es_ES |
dc.subject | Fluorospheres | es_ES |
dc.subject | Hemacytometer | es_ES |
dc.subject | Image analysis | es_ES |
dc.subject | Microscopy | es_ES |
dc.subject | Microspore culture | es_ES |
dc.subject.classification | GENETICA | es_ES |
dc.title | Comparison of six different methods to calculate cell densities | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1186/s13007-018-0297-4 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//ACIF%2F2016%2F129/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/AGL2017-88135-R/ES/DISECCION DE LA RESPUESTA EMBRIOGENICA DE LAS MICROSPORAS: ANALISIS FISIOLOGICO Y GENOMICO DE LA RECALCITRANCIA A LA INDUCCION DE EMBRIOGENESIS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//UPV-FE-2013-7/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//AGL2014-55177-R/ES/NUEVAS VIAS DE MEJORA DE LA EMBRIOGENESIS DE MICROSPORAS EN SOLANACEAS RECALCITRANTES: ESTUDIO DE LA AUTOFAGIA, LA UPR Y LA REGULACION HORMONAL/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia | es_ES |
dc.description.bibliographicCitation | Camacho-Fernández, C.; Hervás, D.; Rivas-Sendra, A.; Marín, MP.; Seguí-Simarro, JM. (2018). Comparison of six different methods to calculate cell densities. Plant Methods. 14(30):1-15. https://doi.org/10.1186/s13007-018-0297-4 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1186/s13007-018-0297-4 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 15 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 14 | es_ES |
dc.description.issue | 30 | es_ES |
dc.identifier.pmid | 29686723 | |
dc.identifier.pmcid | PMC5901878 | |
dc.relation.pasarela | S\361394 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Ministerio de Economía y Empresa | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | Kobayashi T, Higashi K, Saitou T, Kamada H. Physiological properties of inhibitory conditioning factor(s), inhibitory to somatic embryogenesis, in high-density cell cultures of carrot. Plant Sci. 1999;144:69–75. | es_ES |
dc.description.references | Schween G, Hohea A, Koprivova A, Reski R. Effects of nutrients, cell density and culture techniques on protoplast regeneration and early protonema development in a moss, Physcomitrella patens. J Plant Physiol. 2003;160:209–12. | es_ES |
dc.description.references | Kim M, Jang I-C, Kim J-A, Park E-J, Yoon M, Lee Y. Embryogenesis and plant regeneration of hot pepper (Capsicum annuum L.) through isolated microspore culture. Plant Cell Rep. 2008;27:425–34. | es_ES |
dc.description.references | Hoekstra S, Vanzijderveld MH, Heidekamp F, Vandermark F. Microspore culture of Hordeum vulgare L.—the influence of density and osmolality. Plant Cell Rep. 1993;12:661–5. | es_ES |
dc.description.references | Castillo AM, Valles MP, Cistue L. Comparison of anther and isolated microspore cultures in barley. Effects of culture density and regeneration medium. Euphytica. 2000;113:1–8. | es_ES |
dc.description.references | Huang B, Bird S, Kemble R, Simmonds D, Keller W, Miki B. Effects of culture density, conditioned medium and feeder cultures on microspore embryogenesis in Brassica napus L. cv. Topas. Plant Cell Rep. 1990;8:594–7. | es_ES |
dc.description.references | Li HC, Devaux P. High frequency regeneration of barley doubled haploid plants from isolated microspore culture. Plant Sci. 2003;164:379–86. | es_ES |
dc.description.references | Kott LS, Polsoni L, Ellis B, Beversdorf WD. Autotoxicity in isolated microspore cultures of Brassica napus. Can J Bot. 1988;66:1665–70. | es_ES |
dc.description.references | Raina SK, Irfan ST. High-frequency embryogenesis and plantlet regeneration from isolated microspores of indica rice. Plant Cell Rep. 1998;17:957–62. | es_ES |
dc.description.references | Ma R, Guo YD, Pulli S. Comparison of anther and microspore culture in the embryogenesis and regeneration of rye (Secale cereale). Plant Cell Tissue Organ Cult. 2004;76:147–57. | es_ES |
dc.description.references | Höfer M. In vitro androgenesis in apple—improvement of the induction phase. Plant Cell Rep. 2004;22:365–70. | es_ES |
dc.description.references | Ongena K, Das C, Smith JL, Gil S, Johnston G. Determining cell number during cell culture using the scepter cell counter. J Vis Exp. 2010;45:2204. | es_ES |
dc.description.references | Corral-Martínez P, Parra-Vega V, Seguí-Simarro JM. Novel features of Brassica napus embryogenic microspores revealed by high pressure freezing and freeze substitution: evidence for massive autophagy and excretion-based cytoplasmic cleaning. J Exp Bot. 2013;64:3061–75. | es_ES |
dc.description.references | Regner F. Anther and microspore culture in Capsicum. In: Jain SM, Sopory SK, Veilleux RE, editors. In vitro haploid production in higher plants, vol. 3. Dordrecht: Kluwer; 1996. p. 77–89. | es_ES |
dc.description.references | Nelson M, Mason A, Castello M-C, Thomson L, Yan G, Cowling W. Microspore culture preferentially selects unreduced (2n) gametes from an interspecific hybrid of Brassica napus L. × Brassica carinata Braun. Theor Appl Genet. 2009;119:497–505. | es_ES |
dc.description.references | Kim M, Park E-J, An D, Lee Y. High-quality embryo production and plant regeneration using a two-step culture system in isolated microspore cultures of hot pepper (Capsicum annuum L.). Plant Cell Tissue Organ Cult. 2013;112:191–201. | es_ES |
dc.description.references | Simmonds DH, Long NE, Keller WA. High plating efficiency and plant regeneration frequency in low density protoplast cultures derived from an embryogenic Brassica napus cell suspension. Plant Cell Tissue Organ Cult. 1991;27:231–41. | es_ES |
dc.description.references | Gémes Juhász A, Kristóf Z, Vági P, Lantos C, Pauk J. In vitro anther and isolated microspore culture as tools in sweet and spice pepper breeding. Acta Hort. 2009;829:61–4. | es_ES |
dc.description.references | Lantos C, Juhasz AG, Vagi P, Mihaly R, Kristof Z, Pauk J. Androgenesis induction in microspore culture of sweet pepper (Capsicum annuum L.). Plant Biotechnol Rep. 2012;6:123–32. | es_ES |
dc.description.references | Nageli M, Schmid JE, Stamp P, Buter B. Improved formation of regenerable callus in isolated microspore culture of maize: impact of carbohydrates, plating density and time of transfer. Plant Cell Rep. 1999;19:177–84. | es_ES |
dc.description.references | Gu HH, Zhou WJ, Hagberg P. High frequency spontaneous production of doubled haploid plants in microspore cultures of Brassica rapa ssp chinensis. Euphytica. 2003;134:239–45. | es_ES |
dc.description.references | Rudolf K, Bohanec B, Hansen M. Microspore culture of white cabbage, Brassica oleracea var. capitata L.: Genetic improvement of non-responsive cultivars and effect of genome doubling agents. Plant Breed. 1999;118:237–41. | es_ES |
dc.description.references | Sato S, Katoh N, Iwai S, Hagimori M. Frequency of spontaneous polyploidization of embryos regenerated from cultured anthers or microspores of Brassica rapa var. pekinensis L. and B. oleracea var. capitata L. Breed Sci. 2005;55:99–102. | es_ES |
dc.description.references | Nicoloso FT, Val J, Vanderkeur M, Vaniren F, Kijne JW. Flow-cytometric cell counting and DNA estimation for the study of plant cell population dynamics. Plant Cell Tissue Organ Cult. 1994;39:251–9. | es_ES |
dc.description.references | Schulze D, Pauls KP. Flow cytometric characterization of embryogenic and gametophytic development in Brassica napus microspore cultures. Plant Cell Physiol. 1998;39:226–34. | es_ES |
dc.description.references | Schulze D, Pauls KP. Flow cytometric analysis of cellulose tracks development of embryogenic Brassica cells in microspore cultures. New Phytol. 2002;154:249–54. | es_ES |
dc.description.references | Corral-Martínez P, Seguí-Simarro JM. Efficient production of callus-derived doubled haploids through isolated microspore culture in eggplant (Solanum melongena L.). Euphytica. 2012;187:47–61. | es_ES |
dc.description.references | Corral-Martínez P, Seguí-Simarro JM. Refining the method for eggplant microspore culture: effect of abscisic acid, epibrassinolide, polyethylene glycol, naphthaleneacetic acid, 6-benzylaminopurine and arabinogalactan proteins. Euphytica. 2014;195:369–82. | es_ES |
dc.description.references | Rivas-Sendra A, Corral-Martínez P, Camacho-Fernández C, Seguí-Simarro JM. Improved regeneration of eggplant doubled haploids from microspore-derived calli through organogenesis. Plant Cell Tissue Organ Cult. 2015;122:759–65. | es_ES |
dc.description.references | Rivas-Sendra A, Campos-Vega M, Calabuig-Serna A, Seguí-Simarro JM. Development and characterization of an eggplant (Solanum melongena) doubled haploid population and a doubled haploid line with high androgenic response. Euphytica. 2017;213:89. | es_ES |
dc.description.references | Salas P, Rivas-Sendra A, Prohens J, Seguí-Simarro JM. Influence of the stage for anther excision and heterostyly in embryogenesis induction from eggplant anther cultures. Euphytica. 2012;184:235–50. | es_ES |
dc.description.references | Hervás D: random_path: Shortest route for random sampling in circles. ZENODO; 2014. | es_ES |
dc.description.references | Shapiro H. Practical flow cytometry. 3rd ed. New York: Alan R. Liss; 1994. | es_ES |
dc.description.references | Bland JM, Altman DG. Measuring agreement in method comparison studies. Stat Methods Med Res. 1999;8:135–60. | es_ES |
dc.description.references | Lin LI. A concordance correlation coefficient to evaluate reproducibility. Biometrics. 1989;45:255–68. | es_ES |
dc.description.references | R Development Core Team. A language and environment for statistical computing. Vienna: The R Foundation for Statistical Computing; 2011. | es_ES |
dc.description.references | Reynolds TL. Pollen embryogenesis. Plant Mol Biol. 1997;33:1–10. | es_ES |
dc.description.references | Wang M, van Bergen S, Van Duijn B. Insights into a key developmental switch and its importance for efficient plant breeding. Plant Physiol. 2000;124:523–30. | es_ES |
dc.description.references | Cadena-Herrera D, Esparza-De Lara JE, Ramírez-Ibañez ND, López-Morales CA, Pérez NO, Flores-Ortiz LF, Medina-Rivero E. Validation of three viable-cell counting methods: manual, semi-automated, and automated. Biotechnol Rep. 2015;7:9–16. | es_ES |
dc.description.references | Huang L-C, Lin W, Yagami M, Tseng D, Miyashita-Lin E, Singh N, Lin A, Shih S-J. Validation of cell density and viability assays using Cedex automated cell counter. Biologicals. 2010;38:393–400. | es_ES |
dc.description.references | Bailey E, Fenning N, Chamberlain S, Devlin L, Hopkisson J, Tomlinson M. Validation of sperm counting methods using limits of agreement. J Androl. 2007;28:364–73. | es_ES |
dc.description.references | Johnston G. Automated handheld instrument improves counting precision across multiple cell lines. Biotechniques. 2010;48:325–7. | es_ES |
dc.description.references | Louis KS, Siegel AC. Cell viability analysis using trypan blue: manual and automated methods. In: Stoddart MJ, editor. Mammalian cell viability, vol. 740. Humana Press: New York; 2011. p. 7–12 (Methods in molecular biology). | es_ES |
dc.description.references | Tucker KG, Chalder S, Al-Rubeai M, Thomas CR. Measurement of hybridoma cell number, viability, and morphology using fully automated image analysis. Enzyme Microb Technol. 1994;16:29–35. | es_ES |
dc.description.references | Collins CE, Young NA, Flaherty DK, Airey DC, Kaas JH. A rapid and reliable method of counting neurons and other cells in brain tissue: a comparison of flow cytometry and manual counting methods. Front Neuroanat. 2010;4:5. | es_ES |
dc.description.references | Marie D, Simon N, Vaulot D. Phytoplankton Cell Counting By Flow Cytometry. In: Alndersen RA, editor. Algal culturing techniques, vol. 17. Burlington: Elsevier; 2005. p. 253–67. | es_ES |
dc.description.references | Storie I, Sawle A, Goodfellow K, Whitby L, Granger V, Ward RY, Peel J, Smart T, Reilly JT, Barnett D. Perfect count: a novel approach for the single platform enumeration of absolute CD4 + T-lymphocytes. Cytometry Part B: Clinical Cytometry. 2004;57B:47–52. | es_ES |