- -

Comparison of six different methods to calculate cell densities

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Comparison of six different methods to calculate cell densities

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Camacho-Fernández, Carolina es_ES
dc.contributor.author Hervás, David es_ES
dc.contributor.author Rivas-Sendra, Alba es_ES
dc.contributor.author Marín, Mª Pilar es_ES
dc.contributor.author Seguí-Simarro, Jose M. es_ES
dc.date.accessioned 2019-09-27T10:42:35Z
dc.date.available 2019-09-27T10:42:35Z
dc.date.issued 2018 es_ES
dc.identifier.issn 1746-4811 es_ES
dc.identifier.uri http://hdl.handle.net/10251/126497
dc.description.abstract [EN] Background: For in vitro culture of plant and animal cells, one of the critical steps is to adjust the initial cell density. A typical example of this is isolated microspore culture, where specific cell densities have been determined for different species. Out of these ranges, microspore growth is not induced, or is severely reduced. A similar situation occurs in many other plant and animal cell culture systems. Traditionally, researchers have used counting chambers (hemacytometers) to calculate cell densities, but little is still known about their technical advantages. In addition, much less information is available about other, alternative methods. In this work, using isolated eggplant microspore cultures and fluorescent beads (fluorospheres) as experimental systems, we performed a comprehensive comparison of six methods to calculate cell densities: (1) a Neubauer improved hemacytometer, (2) an automated cell counter, (3) a manual-counting method, and three flow cytometry methods based on (4) autofluorescence, (5) propidium iodide staining, and (6) side scattered light (SSC). Results: Our results show that from a technical perspective, hemacytometers are the most reasonable option for cell counting, which may explain their widely spread use. Automated cell counters represent a good compromise between precision and affordability, although with limited accuracy. Finally, the methods based on flow cytometry were, by far, the best in terms of reproducibility and agreement between them, but they showed deficient accuracy and precision. Conclusions: Together, our results show a thorough technical evaluation of each counting method, provide unambiguous arguments to decide which one is the most convenient for the particular case of each laboratory, and in general, shed light into the best way to determine cell densities for in vitro cell cultures. They may have an impact in such a practice not only in the context of microspore culture, but also in any other plant cell culture procedure, or in any process involving particle counting. es_ES
dc.description.sponsorship This work was supported by Grant UPV-FE-2013-7 from Universitat Politecnica de Valencia and Hospital Universitari i Politecnic La Fe to JMSS and MPM, and Grants AGL2014-55177-R and AGL2017-88135-R to JMSS from Spanish Ministerio de Economia y Competitividad (MINECO) jointly funded by FEDER. CCM and ARS are recipients of PhD Fellowships from Generalitat Valenciana and Universitat Politecnica de Valencia, respectively. es_ES
dc.language Inglés es_ES
dc.publisher Springer (Biomed Central Ltd.) es_ES
dc.relation.ispartof Plant Methods es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Automated cell counter es_ES
dc.subject Cell counting es_ES
dc.subject Flow cytometry es_ES
dc.subject Fluorospheres es_ES
dc.subject Hemacytometer es_ES
dc.subject Image analysis es_ES
dc.subject Microscopy es_ES
dc.subject Microspore culture es_ES
dc.subject.classification GENETICA es_ES
dc.title Comparison of six different methods to calculate cell densities es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1186/s13007-018-0297-4 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACIF%2F2016%2F129/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/AGL2017-88135-R/ES/DISECCION DE LA RESPUESTA EMBRIOGENICA DE LAS MICROSPORAS: ANALISIS FISIOLOGICO Y GENOMICO DE LA RECALCITRANCIA A LA INDUCCION DE EMBRIOGENESIS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//UPV-FE-2013-7/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2014-55177-R/ES/NUEVAS VIAS DE MEJORA DE LA EMBRIOGENESIS DE MICROSPORAS EN SOLANACEAS RECALCITRANTES: ESTUDIO DE LA AUTOFAGIA, LA UPR Y LA REGULACION HORMONAL/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.description.bibliographicCitation Camacho-Fernández, C.; Hervás, D.; Rivas-Sendra, A.; Marín, MP.; Seguí-Simarro, JM. (2018). Comparison of six different methods to calculate cell densities. Plant Methods. 14(30):1-15. https://doi.org/10.1186/s13007-018-0297-4 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1186/s13007-018-0297-4 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 14 es_ES
dc.description.issue 30 es_ES
dc.identifier.pmid 29686723
dc.identifier.pmcid PMC5901878
dc.relation.pasarela S\361394 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Economía y Empresa es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Kobayashi T, Higashi K, Saitou T, Kamada H. Physiological properties of inhibitory conditioning factor(s), inhibitory to somatic embryogenesis, in high-density cell cultures of carrot. Plant Sci. 1999;144:69–75. es_ES
dc.description.references Schween G, Hohea A, Koprivova A, Reski R. Effects of nutrients, cell density and culture techniques on protoplast regeneration and early protonema development in a moss, Physcomitrella patens. J Plant Physiol. 2003;160:209–12. es_ES
dc.description.references Kim M, Jang I-C, Kim J-A, Park E-J, Yoon M, Lee Y. Embryogenesis and plant regeneration of hot pepper (Capsicum annuum L.) through isolated microspore culture. Plant Cell Rep. 2008;27:425–34. es_ES
dc.description.references Hoekstra S, Vanzijderveld MH, Heidekamp F, Vandermark F. Microspore culture of Hordeum vulgare L.—the influence of density and osmolality. Plant Cell Rep. 1993;12:661–5. es_ES
dc.description.references Castillo AM, Valles MP, Cistue L. Comparison of anther and isolated microspore cultures in barley. Effects of culture density and regeneration medium. Euphytica. 2000;113:1–8. es_ES
dc.description.references Huang B, Bird S, Kemble R, Simmonds D, Keller W, Miki B. Effects of culture density, conditioned medium and feeder cultures on microspore embryogenesis in Brassica napus L. cv. Topas. Plant Cell Rep. 1990;8:594–7. es_ES
dc.description.references Li HC, Devaux P. High frequency regeneration of barley doubled haploid plants from isolated microspore culture. Plant Sci. 2003;164:379–86. es_ES
dc.description.references Kott LS, Polsoni L, Ellis B, Beversdorf WD. Autotoxicity in isolated microspore cultures of Brassica napus. Can J Bot. 1988;66:1665–70. es_ES
dc.description.references Raina SK, Irfan ST. High-frequency embryogenesis and plantlet regeneration from isolated microspores of indica rice. Plant Cell Rep. 1998;17:957–62. es_ES
dc.description.references Ma R, Guo YD, Pulli S. Comparison of anther and microspore culture in the embryogenesis and regeneration of rye (Secale cereale). Plant Cell Tissue Organ Cult. 2004;76:147–57. es_ES
dc.description.references Höfer M. In vitro androgenesis in apple—improvement of the induction phase. Plant Cell Rep. 2004;22:365–70. es_ES
dc.description.references Ongena K, Das C, Smith JL, Gil S, Johnston G. Determining cell number during cell culture using the scepter cell counter. J Vis Exp. 2010;45:2204. es_ES
dc.description.references Corral-Martínez P, Parra-Vega V, Seguí-Simarro JM. Novel features of Brassica napus embryogenic microspores revealed by high pressure freezing and freeze substitution: evidence for massive autophagy and excretion-based cytoplasmic cleaning. J Exp Bot. 2013;64:3061–75. es_ES
dc.description.references Regner F. Anther and microspore culture in Capsicum. In: Jain SM, Sopory SK, Veilleux RE, editors. In vitro haploid production in higher plants, vol. 3. Dordrecht: Kluwer; 1996. p. 77–89. es_ES
dc.description.references Nelson M, Mason A, Castello M-C, Thomson L, Yan G, Cowling W. Microspore culture preferentially selects unreduced (2n) gametes from an interspecific hybrid of Brassica napus L. × Brassica carinata Braun. Theor Appl Genet. 2009;119:497–505. es_ES
dc.description.references Kim M, Park E-J, An D, Lee Y. High-quality embryo production and plant regeneration using a two-step culture system in isolated microspore cultures of hot pepper (Capsicum annuum L.). Plant Cell Tissue Organ Cult. 2013;112:191–201. es_ES
dc.description.references Simmonds DH, Long NE, Keller WA. High plating efficiency and plant regeneration frequency in low density protoplast cultures derived from an embryogenic Brassica napus cell suspension. Plant Cell Tissue Organ Cult. 1991;27:231–41. es_ES
dc.description.references Gémes Juhász A, Kristóf Z, Vági P, Lantos C, Pauk J. In vitro anther and isolated microspore culture as tools in sweet and spice pepper breeding. Acta Hort. 2009;829:61–4. es_ES
dc.description.references Lantos C, Juhasz AG, Vagi P, Mihaly R, Kristof Z, Pauk J. Androgenesis induction in microspore culture of sweet pepper (Capsicum annuum L.). Plant Biotechnol Rep. 2012;6:123–32. es_ES
dc.description.references Nageli M, Schmid JE, Stamp P, Buter B. Improved formation of regenerable callus in isolated microspore culture of maize: impact of carbohydrates, plating density and time of transfer. Plant Cell Rep. 1999;19:177–84. es_ES
dc.description.references Gu HH, Zhou WJ, Hagberg P. High frequency spontaneous production of doubled haploid plants in microspore cultures of Brassica rapa ssp chinensis. Euphytica. 2003;134:239–45. es_ES
dc.description.references Rudolf K, Bohanec B, Hansen M. Microspore culture of white cabbage, Brassica oleracea var. capitata L.: Genetic improvement of non-responsive cultivars and effect of genome doubling agents. Plant Breed. 1999;118:237–41. es_ES
dc.description.references Sato S, Katoh N, Iwai S, Hagimori M. Frequency of spontaneous polyploidization of embryos regenerated from cultured anthers or microspores of Brassica rapa var. pekinensis L. and B. oleracea var. capitata L. Breed Sci. 2005;55:99–102. es_ES
dc.description.references Nicoloso FT, Val J, Vanderkeur M, Vaniren F, Kijne JW. Flow-cytometric cell counting and DNA estimation for the study of plant cell population dynamics. Plant Cell Tissue Organ Cult. 1994;39:251–9. es_ES
dc.description.references Schulze D, Pauls KP. Flow cytometric characterization of embryogenic and gametophytic development in Brassica napus microspore cultures. Plant Cell Physiol. 1998;39:226–34. es_ES
dc.description.references Schulze D, Pauls KP. Flow cytometric analysis of cellulose tracks development of embryogenic Brassica cells in microspore cultures. New Phytol. 2002;154:249–54. es_ES
dc.description.references Corral-Martínez P, Seguí-Simarro JM. Efficient production of callus-derived doubled haploids through isolated microspore culture in eggplant (Solanum melongena L.). Euphytica. 2012;187:47–61. es_ES
dc.description.references Corral-Martínez P, Seguí-Simarro JM. Refining the method for eggplant microspore culture: effect of abscisic acid, epibrassinolide, polyethylene glycol, naphthaleneacetic acid, 6-benzylaminopurine and arabinogalactan proteins. Euphytica. 2014;195:369–82. es_ES
dc.description.references Rivas-Sendra A, Corral-Martínez P, Camacho-Fernández C, Seguí-Simarro JM. Improved regeneration of eggplant doubled haploids from microspore-derived calli through organogenesis. Plant Cell Tissue Organ Cult. 2015;122:759–65. es_ES
dc.description.references Rivas-Sendra A, Campos-Vega M, Calabuig-Serna A, Seguí-Simarro JM. Development and characterization of an eggplant (Solanum melongena) doubled haploid population and a doubled haploid line with high androgenic response. Euphytica. 2017;213:89. es_ES
dc.description.references Salas P, Rivas-Sendra A, Prohens J, Seguí-Simarro JM. Influence of the stage for anther excision and heterostyly in embryogenesis induction from eggplant anther cultures. Euphytica. 2012;184:235–50. es_ES
dc.description.references Hervás D: random_path: Shortest route for random sampling in circles. ZENODO; 2014. es_ES
dc.description.references Shapiro H. Practical flow cytometry. 3rd ed. New York: Alan R. Liss; 1994. es_ES
dc.description.references Bland JM, Altman DG. Measuring agreement in method comparison studies. Stat Methods Med Res. 1999;8:135–60. es_ES
dc.description.references Lin LI. A concordance correlation coefficient to evaluate reproducibility. Biometrics. 1989;45:255–68. es_ES
dc.description.references R Development Core Team. A language and environment for statistical computing. Vienna: The R Foundation for Statistical Computing; 2011. es_ES
dc.description.references Reynolds TL. Pollen embryogenesis. Plant Mol Biol. 1997;33:1–10. es_ES
dc.description.references Wang M, van Bergen S, Van Duijn B. Insights into a key developmental switch and its importance for efficient plant breeding. Plant Physiol. 2000;124:523–30. es_ES
dc.description.references Cadena-Herrera D, Esparza-De Lara JE, Ramírez-Ibañez ND, López-Morales CA, Pérez NO, Flores-Ortiz LF, Medina-Rivero E. Validation of three viable-cell counting methods: manual, semi-automated, and automated. Biotechnol Rep. 2015;7:9–16. es_ES
dc.description.references Huang L-C, Lin W, Yagami M, Tseng D, Miyashita-Lin E, Singh N, Lin A, Shih S-J. Validation of cell density and viability assays using Cedex automated cell counter. Biologicals. 2010;38:393–400. es_ES
dc.description.references Bailey E, Fenning N, Chamberlain S, Devlin L, Hopkisson J, Tomlinson M. Validation of sperm counting methods using limits of agreement. J Androl. 2007;28:364–73. es_ES
dc.description.references Johnston G. Automated handheld instrument improves counting precision across multiple cell lines. Biotechniques. 2010;48:325–7. es_ES
dc.description.references Louis KS, Siegel AC. Cell viability analysis using trypan blue: manual and automated methods. In: Stoddart MJ, editor. Mammalian cell viability, vol. 740. Humana Press: New York; 2011. p. 7–12 (Methods in molecular biology). es_ES
dc.description.references Tucker KG, Chalder S, Al-Rubeai M, Thomas CR. Measurement of hybridoma cell number, viability, and morphology using fully automated image analysis. Enzyme Microb Technol. 1994;16:29–35. es_ES
dc.description.references Collins CE, Young NA, Flaherty DK, Airey DC, Kaas JH. A rapid and reliable method of counting neurons and other cells in brain tissue: a comparison of flow cytometry and manual counting methods. Front Neuroanat. 2010;4:5. es_ES
dc.description.references Marie D, Simon N, Vaulot D. Phytoplankton Cell Counting By Flow Cytometry. In: Alndersen RA, editor. Algal culturing techniques, vol. 17. Burlington: Elsevier; 2005. p. 253–67. es_ES
dc.description.references Storie I, Sawle A, Goodfellow K, Whitby L, Granger V, Ward RY, Peel J, Smart T, Reilly JT, Barnett D. Perfect count: a novel approach for the single platform enumeration of absolute CD4 + T-lymphocytes. Cytometry Part B: Clinical Cytometry. 2004;57B:47–52. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem