Mostrar el registro sencillo del ítem
dc.contributor.author | Zamora Martínez, Francisco Julián![]() |
es_ES |
dc.contributor.author | España Boquera, Salvador![]() |
es_ES |
dc.contributor.author | Castro-Bleda, Maria Jose![]() |
es_ES |
dc.contributor.author | Palacios Corella![]() |
es_ES |
dc.date.accessioned | 2019-10-02T06:16:15Z | |
dc.date.available | 2019-10-02T06:16:15Z | |
dc.date.issued | 2018 | es_ES |
dc.identifier.issn | 1932-6203 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/126934 | |
dc.description.abstract | [EN] This paper presents a new method to reduce the computational cost when using Neural Networks as Language Models, during recognition, in some particular scenarios. It is based on a Neural Network that considers input contexts of different length in order to ease the use of a fallback mechanism together with the precomputation of softmax normalization constants for these inputs. The proposed approach is empirically validated, showing their capability to emulate lower order N-grams with a single Neural Network. A machine translation task shows that the proposed model constitutes a good solution to the normalization cost of the output softmax layer of Neural Networks, for some practical cases, without a significant impact in performance while improving the system speed. | es_ES |
dc.description.sponsorship | This work was partially supported by the Spanish MINECO and FEDER founds under project TIN2017-85854-C4-2-R (to MJCB). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Public Library of Science | es_ES |
dc.relation.ispartof | PLoS ONE | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | Fallback Variable History NNLMs: Efficient NNLMs by precomputation and stochastic training | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1371/journal.pone.0200884 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-85854-C4-2-R/ES/AMIC-UPV: ANALISIS AFECTIVO DE INFORMACION MULTIMEDIA CON COMUNICACION INCLUSIVA Y NATURAL/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.description.bibliographicCitation | Zamora Martínez, FJ.; España Boquera, S.; Castro-Bleda, MJ.; Palacios Corella (2018). Fallback Variable History NNLMs: Efficient NNLMs by precomputation and stochastic training. PLoS ONE. 13(7). https://doi.org/10.1371/journal.pone.0200884 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1371/journal.pone.0200884 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 13 | es_ES |
dc.description.issue | 7 | es_ES |
dc.identifier.pmid | 30048480 | |
dc.identifier.pmcid | PMC6062053 | |
dc.relation.pasarela | S\375246 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |