- -

Molecular genetic diversity and conservation priorities of Egyptian rabbit breeds

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Molecular genetic diversity and conservation priorities of Egyptian rabbit breeds

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Badr, O.A.M. es_ES
dc.contributor.author El-Shawaf, I.I.S. es_ES
dc.contributor.author Khalil, M.H.A. es_ES
dc.contributor.author Refaat, M.H. es_ES
dc.contributor.author Ramadan, S.I.A. es_ES
dc.date.accessioned 2019-10-02T07:29:17Z
dc.date.available 2019-10-02T07:29:17Z
dc.date.issued 2019-09-30
dc.identifier.issn 1257-5011
dc.identifier.uri http://hdl.handle.net/10251/126953
dc.description.abstract [EN] The limited rabbit resources in Egypt are threatened by the danger of extinction, whereas genetic diversity studies of native breeds could play a vital role in conservation and improvement of these breeds. In this study, 3 native rabbit breeds: Gabali (G), Baladi Red (BR) and Baladi Black (BB), in addition to New Zealand White (NZW), were genotyped using 12 microsatellite markers. All the typed microsatellites were polymorphic by average number of alleles 5.25 per locus. Observed and expected heterozygosity per locus averaged 0.62 and 0.68, respectively. The average polymorphic information content was 0.71 and the highest polymorphic information content was recorded in locus SOL33 by 0.85. All the studied loci except SAT7 and SAT2 showed deviation from Hardy-Weinberg equilibrium with significant level. The inbreeding coefficient of the individuals relative to the total population was 0.07. The within-population heterozygote deficit averaged 0.07 and ranged from 0.141 in BR to 0.015 in BB breeds. The highest pairwise differentiation among the populations was recorded between BB and NZW (0.071), while the lowest value was recorded between BR and both of G (0.038) and BB (0.039). The lowest pairwise Nei’s genetic distance was recorded between BR and BB (0.190), while the highest was recorded between NZW and BB breeds (0.409). BR and G populations were clustered together forming an admixed mosaic cluster. BR recorded the highest contribution in the aggregate genetic diversity based on the three prioritisation methods used. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València
dc.relation.ispartof World Rabbit Science
dc.rights Reserva de todos los derechos es_ES
dc.subject Egyptian rabbits es_ES
dc.subject Genetic diversity es_ES
dc.subject Microsatellite markers es_ES
dc.subject Prioritization es_ES
dc.subject Conservation es_ES
dc.title Molecular genetic diversity and conservation priorities of Egyptian rabbit breeds es_ES
dc.type Artículo es_ES
dc.date.updated 2019-10-02T07:10:07Z
dc.identifier.doi 10.4995/wrs.2019.8923
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Badr, O.; El-Shawaf, I.; Khalil, M.; Refaat, M.; Ramadan, S. (2019). Molecular genetic diversity and conservation priorities of Egyptian rabbit breeds. World Rabbit Science. 27(3):135-141. https://doi.org/10.4995/wrs.2019.8923 es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/wrs.2019.8923 es_ES
dc.description.upvformatpinicio 135 es_ES
dc.description.upvformatpfin 141 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 27
dc.description.issue 3
dc.identifier.eissn 1989-8886
dc.description.references Abdel-Kafy E.S.M., Ahmed S.S.E.D., El-Keredy A., Ali N.I., Ramadan S. , Farid A. 2018. Genetic and phenotypic characterization of the native rabbits in Middle Egypt. Vet. World, 11: 1120. https://doi.org/10.14202/vetworld.2018.1120-1126 es_ES
dc.description.references Bruford M.W., Wayne R.K. 1993. Microsatellites and their application to population genetic studies. Curr. Opin. Genet. Dev., 3: 939-943. https://doi.org/10.1016/0959-437X(93)90017-J es_ES
dc.description.references Caballero A., Toro M.A. 2002. Analysis of genetic diversity for the management of conserved subdivided populations. Conserv. Genet., 3: 289-299. es_ES
dc.description.references Crispim B.d.A., Seno L.d.O., Egito A.A.d., Vargas Jr F.M.d., Grisolia A.B. 2014. Application of microsatellite markers for breeding and genetic conservation of herds of Pantaneiro sheep. Electron. J. Biotechnol., 17: 317-321. https://doi.org/10.1016/j.ejbt.2014.09.007 es_ES
dc.description.references El-Aksher S.H., Sherif H., Khalil M., El-Garhy H.A., Ramadan S. 2017. Molecular analysis of a new synthetic rabbit line and their parental populations using microsatellite and SNP markers. Gene Reports, 8: 17-23. https://doi.org/10.1016/j.genrep.2017.05.001 es_ES
dc.description.references Emam A., Azoz A., Mehaisen G., Ferrand N. , Ahmed N. 2017. Diversity assessment among native Middle Egypt rabbit populations in North Upper-Egypt province by microsatellite polymorphism. World rabbit Sci., 25: 9-16. https://doi.org/10.4995/wrs.2017.5298 es_ES
dc.description.references Galal S. 2007. Farm animal genetic resources in Egypt: fact sheet. Egypt. J. Anim. Prod., 44: 1-23. es_ES
dc.description.references Grimal A., Safaa H., Saenz-de-Juano M., Viudes-de-Castro M., Mehaisen G., Elsayed D., Lavara R., Marco-Jiménez F., Vicente J. 2012. Phylogenetic relationship among four Egyptian and one Spanish rabbit populations based on microsatellite markers. In Proc.: 10th World Rabbit Congress, Sharm El-Sheikh, Egypt, 3-6 September, 2012. 3-6. es_ES
dc.description.references Jakobsson M., Rosenberg N. A. 2007. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics, 23: 1801-1806. https://doi.org/10.1093/bioinformatics/btm233 es_ES
dc.description.references Kalinowski S.T., Taper M.L. , Marshall T.C. 2007. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol., 16: 1099-1106. https://doi.org/10.1111/j.1365-294X.2007.03089.x es_ES
dc.description.references Khalil M. 1999. Rabbit genetic resources of Egypt. Anim. Genet. Resour., 26: 95-111. https://doi.org/10.1017/S101423390000122X es_ES
dc.description.references Khalil M., Baselga M. 2002. Rabbit genetic resources in Mediterranean countries, CIHEAM-IAMZ. es_ES
dc.description.references Khalil M., Motawei M., Al-Saef A., Al-Sobayil K., El-Zarei M. 2008. RAPD markers linked to litter, lactation and growth traits in rabbits. In Proc.: 9th World Rabbit Congress, Verona, Italy, 10-13 June, 2008, 143-148. es_ES
dc.description.references Lai F.Y., Ding S.T., Tu P.A., Chen R.S., Lin D.Y., Lin E.C., Wang P.H. Population structure and phylogenetic analysis of laboratory rabbits in Taiwan based on microsatellite markers. World Rabbit Sci., 26: 57-70. https://doi.org/10.4995/wrs.2018.7362 es_ES
dc.description.references MacHugh D.E., Shriver M.D., Loftus R.T., Cunningham P., Bradley D.G. 1997. Microsatellite DNA variation and the evolution, domestication and phylogeography of taurine and zebu cattle (Bos taurus and Bos indicus). Genetics, 146: 1071-1086. es_ES
dc.description.references Marsjan P., Oldenbroek J. 2007. Molecular markers, a tool for exploring genetic diversity (Section C in part 4). The State of the World's Animal Genetic Resources for Food and Agriculture. FAO. es_ES
dc.description.references Nei M., Tajima F., Tateno Y. 1983. Accuracy of estimated phylogenetic trees from molecular data. J. Mol. Evol., 19: 153-170. https://doi.org/10.1007/BF02300753 es_ES
dc.description.references Ollivier L., Foulley J.L. 2005. Aggregate diversity: new approach combining within-and between-breed genetic diversity. Livest. Prod. Sci., 95: 247-254. https://doi.org/10.1016/j.livprodsci.2005.01.005 es_ES
dc.description.references Peakall R., Smouse P.E. 2006. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes., 6: 288-295. https://doi.org/10.1111/j.1471-8286.2005.01155.x es_ES
dc.description.references Petit R.J., El Mousadik A., Pons O. 1998. Identifying populations for conservation on the basis of genetic markers. Conserv. Biol., 12: 844-855. https://doi.org/10.1046/j.1523-1739.1998.96489.x es_ES
dc.description.references Ramadan S., Kayang B.B., Inoue E., Nirasawa K., Hayakawa H., Ito S.I. , Inoue-Murayama M. 2012. Evaluation of genetic diversity and conservation priorities for Egyptian chickens. O.J.A.S., 2: 183. https://doi.org/10.4236/ojas.2012.23025 es_ES
dc.description.references Raymond M. 1995. GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J. Hered., 86: 248-249. https://doi.org/10.1093/oxfordjournals.jhered.a111573 es_ES
dc.description.references Rosenberg N.A. 2004. DISTRUCT: a program for the graphical display of population structure. Mol. Ecol. Notes, 4: 137-138. https://doi.org/10.1046/j.1471-8286.2003.00566.x es_ES
dc.description.references Saitou N., Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol., 4: 406-425. https://doi.org/10.1093/oxfordjournals.molbev.a040454 es_ES
dc.description.references Weir B.S., Cockerham C.C. 1984. Estimating F‐statistics for the analysis of population structure. Evolution, 38: 1358-1370. https://doi.org/10.1111/j.1558-5646.1984.tb05657.x es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem