- -

Simple dynamical systems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Simple dynamical systems

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ali Akbar, K. es_ES
dc.contributor.author Kannan, V. es_ES
dc.contributor.author Subramania Pillai, I. es_ES
dc.date.accessioned 2019-10-03T06:57:13Z
dc.date.available 2019-10-03T06:57:13Z
dc.date.issued 2019-10-01
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/127120
dc.description.abstract [EN] In this paper, we study the class of simple systems on R induced by homeomorphisms having finitely many non-ordinary points. We characterize the family of homeomorphisms on R having finitely many non-ordinary points upto (order) conjugacy. For x,y ∈ R, we say x ∼ y on a dynamical system (R,f) if x and y have same dynamical properties, which is an equivalence relation. Said precisely, x ∼ y if there exists an increasing homeomorphism h : R → R such that h ◦ f = f ◦ h and h(x) = y. An element x ∈ R is ordinary in (R,f) if its equivalence class [x] is a neighbourhood of it. es_ES
dc.description.sponsorship The first author acknowledges UGC, INDIA for financial support. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València
dc.relation.ispartof Applied General Topology
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Special points es_ES
dc.subject Non-ordinary points es_ES
dc.subject Critical points es_ES
dc.subject Order conjugacy es_ES
dc.title Simple dynamical systems es_ES
dc.type Artículo es_ES
dc.date.updated 2019-10-03T06:47:31Z
dc.identifier.doi 10.4995/agt.2019.7910
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Ali Akbar, K.; Kannan, V.; Subramania Pillai, I. (2019). Simple dynamical systems. Applied General Topology. 20(2):307-324. https://doi.org/10.4995/agt.2019.7910 es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2019.7910 es_ES
dc.description.upvformatpinicio 307 es_ES
dc.description.upvformatpfin 324 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20
dc.description.issue 2
dc.identifier.eissn 1989-4147
dc.contributor.funder University Grants Commission, India
dc.description.references L. S. Block and W. A. Coppel, Dynamics in One Dimension, Volume 1513 of Lecture Notes in Mathematics, Springer-Verlag, Berline, 1992. https://doi.org/10.1007/BFb0084762 es_ES
dc.description.references L. Block and E. Coven, Topological conjugacy and transitivity for a class of piecewise monotone maps of the interval, Trans. Amer. Math. Soc. 300 (1987), 297-306. https://doi.org/10.1090/S0002-9947-1987-0871677-X es_ES
dc.description.references M. Brin and G. Stuck, Introduction to Dynamical Systems, Cambridge University Press, 2002. https://doi.org/10.1017/CBO9780511755316 es_ES
dc.description.references R. L. Devaney, An Introduction to Chaotic Dynamical Systems, Addison-Wesley Publishing Company Advanced Book Program, Redwood City, CA, second edition, 1989. es_ES
dc.description.references R. A. Holmgren, A First Course in Discrete Dynamical Systems, Springer-Verlag, New York, 1996. https://doi.org/10.1007/978-1-4419-8732-7 es_ES
dc.description.references S. Sai, Symbolic dynamics for complete classification, Ph.D Thesis, University of Hyderabad, 2000. es_ES
dc.description.references B. Sankara Rao, I. Subramania Pillai and V. Kannan, The set of dynamically special points, Aequationes Mathematicae 82, no. 1-2 (2011), 81-90. https://doi.org/10.1007/s00010-010-0066-6 es_ES
dc.description.references A. N. Sharkovskii, Coexistence of cycles of a continuous map of a line into itself, Ukr. Math. Z. 16 (1964), 61-71. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem