Mostrar el registro sencillo del ítem
dc.contributor.author | Ali Akbar, K. | es_ES |
dc.contributor.author | Kannan, V. | es_ES |
dc.contributor.author | Subramania Pillai, I. | es_ES |
dc.date.accessioned | 2019-10-03T06:57:13Z | |
dc.date.available | 2019-10-03T06:57:13Z | |
dc.date.issued | 2019-10-01 | |
dc.identifier.issn | 1576-9402 | |
dc.identifier.uri | http://hdl.handle.net/10251/127120 | |
dc.description.abstract | [EN] In this paper, we study the class of simple systems on R induced by homeomorphisms having finitely many non-ordinary points. We characterize the family of homeomorphisms on R having finitely many non-ordinary points upto (order) conjugacy. For x,y ∈ R, we say x ∼ y on a dynamical system (R,f) if x and y have same dynamical properties, which is an equivalence relation. Said precisely, x ∼ y if there exists an increasing homeomorphism h : R → R such that h ◦ f = f ◦ h and h(x) = y. An element x ∈ R is ordinary in (R,f) if its equivalence class [x] is a neighbourhood of it. | es_ES |
dc.description.sponsorship | The first author acknowledges UGC, INDIA for financial support. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | |
dc.relation.ispartof | Applied General Topology | |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Special points | es_ES |
dc.subject | Non-ordinary points | es_ES |
dc.subject | Critical points | es_ES |
dc.subject | Order conjugacy | es_ES |
dc.title | Simple dynamical systems | es_ES |
dc.type | Artículo | es_ES |
dc.date.updated | 2019-10-03T06:47:31Z | |
dc.identifier.doi | 10.4995/agt.2019.7910 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Ali Akbar, K.; Kannan, V.; Subramania Pillai, I. (2019). Simple dynamical systems. Applied General Topology. 20(2):307-324. https://doi.org/10.4995/agt.2019.7910 | es_ES |
dc.description.accrualMethod | SWORD | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/agt.2019.7910 | es_ES |
dc.description.upvformatpinicio | 307 | es_ES |
dc.description.upvformatpfin | 324 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 20 | |
dc.description.issue | 2 | |
dc.identifier.eissn | 1989-4147 | |
dc.contributor.funder | University Grants Commission, India | |
dc.description.references | L. S. Block and W. A. Coppel, Dynamics in One Dimension, Volume 1513 of Lecture Notes in Mathematics, Springer-Verlag, Berline, 1992. https://doi.org/10.1007/BFb0084762 | es_ES |
dc.description.references | L. Block and E. Coven, Topological conjugacy and transitivity for a class of piecewise monotone maps of the interval, Trans. Amer. Math. Soc. 300 (1987), 297-306. https://doi.org/10.1090/S0002-9947-1987-0871677-X | es_ES |
dc.description.references | M. Brin and G. Stuck, Introduction to Dynamical Systems, Cambridge University Press, 2002. https://doi.org/10.1017/CBO9780511755316 | es_ES |
dc.description.references | R. L. Devaney, An Introduction to Chaotic Dynamical Systems, Addison-Wesley Publishing Company Advanced Book Program, Redwood City, CA, second edition, 1989. | es_ES |
dc.description.references | R. A. Holmgren, A First Course in Discrete Dynamical Systems, Springer-Verlag, New York, 1996. https://doi.org/10.1007/978-1-4419-8732-7 | es_ES |
dc.description.references | S. Sai, Symbolic dynamics for complete classification, Ph.D Thesis, University of Hyderabad, 2000. | es_ES |
dc.description.references | B. Sankara Rao, I. Subramania Pillai and V. Kannan, The set of dynamically special points, Aequationes Mathematicae 82, no. 1-2 (2011), 81-90. https://doi.org/10.1007/s00010-010-0066-6 | es_ES |
dc.description.references | A. N. Sharkovskii, Coexistence of cycles of a continuous map of a line into itself, Ukr. Math. Z. 16 (1964), 61-71. | es_ES |