- -

Remarks on fixed point assertions in digital topology, 3

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Remarks on fixed point assertions in digital topology, 3

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Boxer, Laurence es_ES
dc.date.accessioned 2019-10-03T07:10:54Z
dc.date.available 2019-10-03T07:10:54Z
dc.date.issued 2019-10-01
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/127125
dc.description.abstract [EN] We continue the work of [5] and [3], in which are considered papers in the literature that discuss fixed point assertions in digital topology. We discuss published assertions that are incorrect or incorrectly proven; that are severely limited or reduce to triviality under "usual" conditions; or that we improve upon. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València
dc.relation.ispartof Applied General Topology
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Digital topology es_ES
dc.subject Fixed point es_ES
dc.subject Approximate fixed point es_ES
dc.subject Metric space es_ES
dc.title Remarks on fixed point assertions in digital topology, 3 es_ES
dc.type Artículo es_ES
dc.date.updated 2019-10-03T06:47:28Z
dc.identifier.doi 10.4995/agt.2019.11117
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Boxer, L. (2019). Remarks on fixed point assertions in digital topology, 3. Applied General Topology. 20(2):349-361. https://doi.org/10.4995/agt.2019.11117 es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2019.11117 es_ES
dc.description.upvformatpinicio 349 es_ES
dc.description.upvformatpfin 361 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20
dc.description.issue 2
dc.identifier.eissn 1989-4147
dc.description.references L. Boxer, A classical construction for the digital fundamental group, Journal of Mathematical Imaging and Vision 10 (1999), 51-62. https://doi.org/10.1023/A:1008370600456 es_ES
dc.description.references L. Boxer, Generalized normal product adjacency in digital topology, Applied General Topology 18, no. 2 (2017), 401-427. https://doi.org/10.4995/agt.2017.7798 es_ES
dc.description.references L. Boxer, Remarks on fixed point assertions in digital topology, 2, Applied General Topology 20, no. 1 (2019), 155-175. https://doi.org/10.4995/agt.2019.10667 es_ES
dc.description.references L. Boxer, O. Ege, I. Karaca, J. Lopez and J. Louwsma, Digital fixed points, approximate fixed points and universal functions, Applied General Topology 17, no. 2 (2016), 159-172. https://doi.org/10.4995/agt.2016.4704 es_ES
dc.description.references L. Boxer and P. C. Staecker, Remarks on fixed point assertions in digital topology, Applied General Topology 20, no. 1 (2019), 135-153. https://doi.org/10.4995/agt.2019.10474 es_ES
dc.description.references G. Chartrand and L. Lesniak, Graphs & Digraphs, 2nd ed., Wadsworth, Inc., Belmont, CA, 1986. es_ES
dc.description.references S. Dalal, Common fixed point results for weakly compatible map in digital metric spaces, Scholars Journal of Physics, Mathematics and Statistics 4, no. 4 (2017), 196-201. es_ES
dc.description.references O. Ege and I. Karaca, Digital homotopy fixed point theory, Comptes Rendus Mathematique 353, no. 11 (2015), 1029-1033. https://doi.org/10.1016/j.crma.2015.07.006 es_ES
dc.description.references J. Haarmann, M. P. Murphy, C. S. Peters and P. C. Staecker, Homotopy equivalence of finite digital images, Journal of Mathematical Imaging and Vision 53, no. 3 (2015), 288-302. https://doi.org/10.1007/s10851-015-0578-8 es_ES
dc.description.references S.-E. Han, Banach fixed point theorem from the viewpoint of digital topology, Journal of Nonlinear Science and Applications 9 (2016), 895-905. https://doi.org/10.22436/jnsa.009.03.19 es_ES
dc.description.references D. Jain and A.C. Upadhyaya, Weakly commuting mappings in digital metric spaces, International Advanced Research Journal in Science, Engineering and Technology 4, no. 8 (2017), 12-16. es_ES
dc.description.references K. Jyoti and A. Rani, Digital expansions endowed with fixed point theory, Turkish Journal of Analysis and Number Theory 5, no. 5 (2017), 146-152. https://doi.org/10.12691/tjant-5-5-1 es_ES
dc.description.references A. Rosenfeld, 'Continuous' functions on digital pictures, Pattern Recognition Letters 4 (1986), 177-184. https://doi.org/10.1016/0167-8655(86)90017-6 es_ES
dc.description.references B. Samet, C. Vetro,and P. Vetro, Fixed point theorem for $alpha-psi$-contractive type mappings, Nonlinear Analysis 75 (2012), 2154-2165. https://doi.org/10.1016/j.na.2011.10.014 es_ES
dc.description.references S. Sessa, On a weak commutative condition of mappings in fixed point considerations, Publications De l'Institut Mathematique, Nouvelle Serie Tome 32 (1982), 149-153. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem