- -

Matrix characterization of multidimensional subshifts of finite type

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Matrix characterization of multidimensional subshifts of finite type

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sharma, Puneet es_ES
dc.contributor.author Kumar, Dileep es_ES
dc.date.accessioned 2019-10-03T07:33:33Z
dc.date.available 2019-10-03T07:33:33Z
dc.date.issued 2019-10-01
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/127136
dc.description.abstract [EN] Let X ⊂ AZd be a 2-dimensional subshift of finite type. We prove that any 2-dimensional subshift of finite type can be characterized by a square matrix of infinite dimension. We extend our result to a general d-dimensional case. We prove that the multidimensional shift space is non-empty if and only if the matrix obtained is of positive dimension. In the process, we give an alternative view of the necessary and sufficient conditions obtained for the non-emptiness of the multidimensional shift space. We also give sufficient conditions for the shift space X to exhibit periodic points. es_ES
dc.description.sponsorship The first author thanks National Board for Higher Mathematics (NBHM) Grant No. 2/48(39)/2016/NBHM(R.P)/R&D II/4519 for financial support. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València
dc.relation.ispartof Applied General Topology
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Multidimensional shift spaces es_ES
dc.subject Shifts of finite type es_ES
dc.subject Periodicity in multidimensional shifts of finite type es_ES
dc.title Matrix characterization of multidimensional subshifts of finite type es_ES
dc.type Artículo es_ES
dc.date.updated 2019-10-03T06:47:19Z
dc.identifier.doi 10.4995/agt.2019.11541
dc.relation.projectID info:eu-repo/grantAgreement/NBHM//2%2F48(39)%2F2016%2FNBHM(R.P)%2FR&D II%2F4519/
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Sharma, P.; Kumar, D. (2019). Matrix characterization of multidimensional subshifts of finite type. Applied General Topology. 20(2):407-418. https://doi.org/10.4995/agt.2019.11541 es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2019.11541 es_ES
dc.description.upvformatpinicio 407 es_ES
dc.description.upvformatpfin 418 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20
dc.description.issue 2
dc.identifier.eissn 1989-4147
dc.contributor.funder National Board for Higher Mathematics
dc.description.references J. C. Ban, W. G. Hu, S. S. Lin and Y. H. Lin, Verification of mixing properties in two-dimensional shifts of finite type, arXiv:1112.2471v2. es_ES
dc.description.references M.-P. Beal, F. Fiorenzi and F. Mignosi, Minimal forbidden patterns of multi-dimensional shifts, Int. J. Algebra Comput. 15 (2005), 73-93. https://doi.org/10.1142/S0218196705002165 es_ES
dc.description.references R. Berger, The undecidability of the Domino Problem, Mem. Amer. Math. Soc. 66 (1966). https://doi.org/10.1090/memo/0066 es_ES
dc.description.references M. Boyle, R. Pavlov and M. Schraudner, Multidimensional sofic shifts without separation and their factors, Transactions of the American Mathematical Society 362, no. 9 (2010), 4617-4653. https://doi.org/10.1090/S0002-9947-10-05003-8 es_ES
dc.description.references X.-C. Fu, W. Lu, P. Ashwin and J. Duan, Symbolic representations of iterated maps, Topological Methods in Nonlinear Analysis 18 (2001), 119-147. https://doi.org/10.12775/TMNA.2001.027 es_ES
dc.description.references J. Hadamard, Les surfaces a coubures opposees et leurs lignes geodesiques, J. Math. Pures Appi. 5 IV (1898), 27-74. es_ES
dc.description.references M. Hochman, On dynamics and recursive properties of multidimensional symbolic dynamics, Invent. Math. 176:131 (2009). https://doi.org/10.1007/s00222-008-0161-7 es_ES
dc.description.references M. Hochman and T. Meyerovitch, A characterization of the entropies of multidimensional shifts of finite type, Annals of Mathematics 171, no. 3 (2010), 2011-2038. https://doi.org/10.4007/annals.2010.171.2011 es_ES
dc.description.references B. P. Kitchens, Symbolic Dynamics: One-Sided, Two-Sided and Countable State Markov Shifts, Universitext. Springer-Verlag, Berlin, 1998. https://doi.org/10.1007/978-3-642-58822-8_7 es_ES
dc.description.references S. Lightwood, Morphisms from non-periodic $Z^2$-subshifts I: Constructing embeddings from homomorphisms, Ergodic Theory Dynam. Systems 23, no. 2 (2003), 587-609. https://doi.org/10.1017/S014338570200130X es_ES
dc.description.references D. Lind and B. Marcus, An introduction to symbolic dynamics and coding, Cambridge University Press, Cambridge, 1995. https://doi.org/10.1017/CBO9780511626302 es_ES
dc.description.references A. Quas and P. Trow, Subshifts of multidimensional shifts of finite type, Ergodic Theory and Dynamical Systems 20, no. 3 (2000), 859-874. https://doi.org/10.1017/S0143385700000468 es_ES
dc.description.references R. M. Robinson, Undecidability and nonperiodicity for tilings of the plane, Invent. Math. 12 (1971), 177-209. https://doi.org/10.1007/BF01418780 es_ES
dc.description.references C. E. Shannon, A mathematical theory of communication, Bell Syst. Tech. J. 27 (1948), 379-423, 623-656. https://doi.org/10.1002/j.1538-7305.1948.tb00917.x es_ES
dc.description.references H. H. Wicke and J. M. Worrell, Jr., Open continuous mappings of spaces having bases of countable order, Duke Math. J. 34 (1967), 255-271. https://doi.org/10.1215/S0012-7094-67-03430-8 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem