- -

Balleans, hyperballeans and ideals

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Balleans, hyperballeans and ideals

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Dikranjan, Dikran es_ES
dc.contributor.author Protasov, Igor es_ES
dc.contributor.author Protasova, Ksenia es_ES
dc.contributor.author Zava, Nicolò es_ES
dc.date.accessioned 2019-10-03T07:51:59Z
dc.date.available 2019-10-03T07:51:59Z
dc.date.issued 2019-10-01
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/127140
dc.description.abstract [EN] A ballean B (or a coarse structure) on a set X is a family of subsets of X called balls (or entourages of the diagonal in X × X) dened in such a way that B can be considered as the asymptotic counterpart of a uniform topological space. The aim of this paper is to study two concrete balleans dened by the ideals in the Boolean algebra of all subsets of X and their hyperballeans, with particular emphasis on their connectedness structure, more specically the number of their connected components. es_ES
dc.description.sponsorship The first named author thankfully acknowledges partial financial support via the grant PRID at the Department of Mathematical,Computer and Physical Sciences, Udine University. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València
dc.relation.ispartof Applied General Topology
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Balleans es_ES
dc.subject Coarse structure es_ES
dc.subject Coarse map es_ES
dc.subject Asymorphism es_ES
dc.subject Balleans defined by ideals es_ES
dc.subject Hyperballeans es_ES
dc.title Balleans, hyperballeans and ideals es_ES
dc.type Artículo es_ES
dc.date.updated 2019-10-03T06:47:05Z
dc.identifier.doi 10.4995/agt.2019.11645
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Dikranjan, D.; Protasov, I.; Protasova, K.; Zava, N. (2019). Balleans, hyperballeans and ideals. Applied General Topology. 20(2):431-447. https://doi.org/10.4995/agt.2019.11645 es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2019.11645 es_ES
dc.description.upvformatpinicio 431 es_ES
dc.description.upvformatpfin 447 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20
dc.description.issue 2
dc.identifier.eissn 1989-4147
dc.contributor.funder Università degli Studi di Udine, Italia
dc.description.references T. Banakh, I. Protasov, D. Repovs and S. Slobodianiuk, Classifying homogeneous cellular ordinal balleans up to coarse equivalence, arxiv: 1409.3910v2. es_ES
dc.description.references T. Banakh and I. Zarichnyi, Characterizing the Cantor bi-cube in asymptotic categories, Groups, Geometry and Dynamics 5 (2011), 691-728. https://doi.org/10.4171/GGD/145 es_ES
dc.description.references W. Comfort and S. Negrepontis, The Theory of Ultrafilters, Grundlehren der mathematischen Wissenschaften, Band 211, Springer--Verlag, Berlin-Heidelberg-New York, 1974. es_ES
dc.description.references D. Dikranjan and N. Zava, Some categorical aspects of coarse structures and balleans, Topology Appl. 225 (2017), 164--194. https://doi.org/10.1016/j.topol.2017.04.011 es_ES
dc.description.references D. Dikranjan and N. Zava, Preservation and reflection of size properties of balleans, Topology Appl. 221 (2017), 570--595. https://doi.org/10.1016/j.topol.2017.02.008 es_ES
dc.description.references A. Dow, Closures of discrete sets in compact spaces, Studia Sci. Math. Hungar. 42, no. 2 (2005), 227--234. https://doi.org/10.1556/SScMath.42.2005.2.7 es_ES
dc.description.references K. Kunen, Set theory. An introduction to independence proofs, Studies in Logic and Foundations of Math., vol. 102, North-Holland, Amsterdam-New York-Oxford, 1980. es_ES
dc.description.references O. Petrenko and I. Protasov, Balleans and filters, Mat. Stud. 38, no. 1 (2012), 3--11. https://doi.org/10.1007/s11253-012-0653-x es_ES
dc.description.references I. Protasov and T. Banakh, Ball Structures and Colorings of Groups and Graphs, Mat. Stud. Monogr. Ser 11, VNTL, Lviv, 2003. es_ES
dc.description.references I. Protasov and K. Protasova, On hyperballeans of bounded geometry, arXiv:1702.07941v1. es_ES
dc.description.references I. Protasov and M. Zarichnyi, General Asymptology, 2007 VNTL Publishers, Lviv, Ukraine. es_ES
dc.description.references J. Roe, Lectures on Coarse Geometry, Univ. Lecture Ser., vol. 31, American Mathematical Society, Providence RI, 2003. https://doi.org/10.1090/ulect/031 es_ES
dc.description.references N. Zava, On F-hyperballeans, work in progress. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem