- -

Hydrological post-processing based on approximate Bayesian computation (ABC)

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Hydrological post-processing based on approximate Bayesian computation (ABC)

Show simple item record

Files in this item

dc.contributor.author Romero-Cuellar, Jonathan es_ES
dc.contributor.author Abbruzzo, Antonino es_ES
dc.contributor.author Adelfio, Giada es_ES
dc.contributor.author Francés, F. es_ES
dc.date.accessioned 2019-10-16T20:00:44Z
dc.date.available 2019-10-16T20:00:44Z
dc.date.issued 2019 es_ES
dc.identifier.issn 1436-3240 es_ES
dc.identifier.uri http://hdl.handle.net/10251/128735
dc.description.abstract [EN] This study introduces a method to quantify the conditional predictive uncertainty in hydrological post-processing contexts when it is cumbersome to calculate the likelihood (intractable likelihood). Sometimes, it can be difficult to calculate the likelihood itself in hydrological modelling, specially working with complex models or with ungauged catchments. Therefore, we propose the ABC post-processor that exchanges the requirement of calculating the likelihood function by the use of some sufficient summary statistics and synthetic datasets. The aim is to show that the conditional predictive distribution is qualitatively similar produced by the exact predictive (MCMC post-processor) or the approximate predictive (ABC post-processor). We also use MCMC post-processor as a benchmark to make results more comparable with the proposed method. We test the ABC post-processor in two scenarios: (1) the Aipe catchment with tropical climate and a spatially-lumped hydrological model (Colombia) and (2) the Oria catchment with oceanic climate and a spatially-distributed hydrological model (Spain). The main finding of the study is that the approximate (ABC post-processor) conditional predictive uncertainty is almost equivalent to the exact predictive (MCMC post-processor) in both scenarios. es_ES
dc.description.sponsorship This study was partially supported by the Departamento del Huila Scholarship Program No. 677 (Colombia) and Colciencias, by the Spanish Research Project TETIS-MED (ref. CGL2014-58127-C3-3-R) and TETIS-CHANGE (ref.RTI2018-093717-B-I00). Also, G. Adelfio's research has been supported by the national grant of the Italian Ministry of Education University and Research (MIUR) for the PRIN-2015 program, "Complex space-time modelling and functional analysis for probabilistic forecast of seismic events'. The authors also wish to thank the editor and the two anonymous reviewers for their thoughtful comments for the revision of the manuscript. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation MINECO/CGL2014-58127-C3-3-R-AR es_ES
dc.relation AEI/RTI2018-093717-B-I00-AR es_ES
dc.relation.ispartof Stochastic Environmental Research and Risk Assessment es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Free-likelihood approach es_ES
dc.subject Probabilistic modelling es_ES
dc.subject Uncertainty analysis es_ES
dc.subject Hydrological forecasting es_ES
dc.subject Summary statistics es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.title Hydrological post-processing based on approximate Bayesian computation (ABC) es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00477-019-01694-y es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Romero-Cuellar, J.; Abbruzzo, A.; Adelfio, G.; Francés, F. (2019). Hydrological post-processing based on approximate Bayesian computation (ABC). Stochastic Environmental Research and Risk Assessment. 33(7):1361-1373. https://doi.org/10.1007/s00477-019-01694-y es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1007/s00477-019-01694-y es_ES
dc.description.upvformatpinicio 1361 es_ES
dc.description.upvformatpfin 1373 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 33 es_ES
dc.description.issue 7 es_ES
dc.relation.pasarela S\390053 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Economía y Empresa es_ES
dc.relation.references Beaumont MA, Zhang W, Balding DJ (2002) Approximate Bayesian computation in population genetics. Genetics 162(4):2025–2035 es_ES
dc.relation.references Blackwell D, Dubins L (1962) Merging of opinions with increasing information. Ann Math Stat 33(3):882–886 es_ES
dc.relation.references Bogner K, Liechti K, Zappa M (2016) Post-processing of stream flows in Switzerland with an emphasis on low flows and floods. Water 8(4):115 es_ES
dc.relation.references Brown JD, Seo D-J (2010) A nonparametric postprocessor for bias correction of hydrometeorological and hydrologic ensemble forecasts. J Hydrometeorol 11(3):642–665 es_ES
dc.relation.references Butts MB, Payne JT, Kristensen M, Madsen H (2004) An evaluation of the impact of model structure on hydrological modelling uncertainty for streamflow simulation. J Hydrol 298(1):242–266 es_ES
dc.relation.references Coccia G, Todini E (2011) Recent developments in predictive uncertainty assessment based on the model conditional processor approach. Hydrol Earth Syst Sci 15:3253–3274 es_ES
dc.relation.references Csillery K, Francois O, Blum MGB (2012) abc: an R package for approximate Bayesian computation (abc). Methods Ecol Evol 3:475–479 es_ES
dc.relation.references Diaconis P, Freedman D (1986) On the consistency of bayes estimates. Ann Stat 14(1):1–26 es_ES
dc.relation.references Diks CGH, Vrugt JA (2010) Comparison of point forecast accuracy of model averaging methods in hydrologic applications. Stoch Environ Res Risk Assess 24(6):809–820 es_ES
dc.relation.references Drovandi CC, Pettitt AN (2011) Likelihood-free Bayesian estimation of multivariate quantile distributions. Comput Stat Data Anal 55(9):2541–2556 es_ES
dc.relation.references Evin G, Thyer M, Kavetski D, McInerney D, Kuczera G (2014) Comparison of joint versus postprocessor approaches for hydrological uncertainty estimation accounting for error autocorrelation and heteroscedasticity. Water Resour Res 50(3):2350–2375 es_ES
dc.relation.references Fearnhead P, Prangle D (2012) Constructing summary statistics for approximate bayesian computation: semi-automatic approximate Bayesian computation. J R Stat Soc Ser B Stat Methodol 74(3):419–474 es_ES
dc.relation.references Fenicia F, Kavetski D, Reichert P, Albert C (2018) Signature-domain calibration of hydrological models using approximate Bayesian computation: empirical analysis of fundamental properties. Water Resour Res 54:3958–3987 es_ES
dc.relation.references Francés F, Vélez JI, Vélez JJ (2007) Split-parameter structure for the automatic calibration of distributed hydrological models. J Hydrol 332(1):226–240 es_ES
dc.relation.references Frazier DT, Maneesoonthorn W, Martin GM, McCabe BP (2019) Approximate Bayesian forecasting. Int J Forecast 35(2):521–539 es_ES
dc.relation.references Gelman A, Rubin DB (1992) Inference from iterative simulation using multiple sequences. Stat Sci 7(4):457–472 es_ES
dc.relation.references Gelman A, Stern HS, Carlin JB, Dunson DB, Vehtari A, Rubin DB (2013) Bayesian data analysis. Chapman and Hall/CRC, Boca Raton es_ES
dc.relation.references Glahn HR, Lowry DA (1972) The use of model output statistics (mos) in objective weather forecasting. J Appl Meteorol 11(8):1203–1211 es_ES
dc.relation.references Gupta HV, Kling H, Yilmaz KK, Martinez GF (2009) Decomposition of the mean squared error and nse performance criteria: implications for improving hydrological modelling. J Hydrol 377(1):80–91 es_ES
dc.relation.references Haario H, Saksman E, Tamminen J (2001) An adaptive metropolis algorithm. Bernoulli 7(2):223–242 es_ES
dc.relation.references Kavetski D, Fenicia F, Reichert P, Albert C (2018) Signature-domain calibration of hydrological models using approximate Bayesian computation: theory and comparison to existing applications. Water Resour Res 54:4059–4083 es_ES
dc.relation.references Khajehei S, Moradkhani H (2017) Towards an improved ensemble precipitation forecast: a probabilistic post-processing approach. J Hydrol 546:476–489 es_ES
dc.relation.references Klein B, Meissner D, Kobialka H-U, Reggiani P (2016) Predictive uncertainty estimation of hydrological multi-model ensembles using pair-copula construction. Water 8(4):125 es_ES
dc.relation.references Krzysztofowicz R, Kelly KS (2000) Hydrologic uncertainty processor for probabilistic river stage forecasting. Water Resour Res 36(11):3265–3277 es_ES
dc.relation.references Laio F, Tamea S (2007) Verification tools for probabilistic forecasts of continuous hydrological variables. Hydrol Earth Syst Sci 11(4):1267–1277 es_ES
dc.relation.references Li B, Liang Z, He Y, Hu L, Zhao W, Acharya K (2017) Comparison of parameter uncertainty analysis techniques for a topmodel application. Stoch Environ Res Risk Assess 31(5):1045–1059 es_ES
dc.relation.references Liang Z, Chang W, Li B (2012) Bayesian flood frequency analysis in the light of model and parameter uncertainties. Stoch Environ Res Risk Assess 26(5):721–730 es_ES
dc.relation.references Lindley DV, Smith AFM (1972) Bayes estimates for the linear model. J R Stat Soc Ser B Methodol 34(1):1–41 es_ES
dc.relation.references Liu Y, Gupta HV (2007) Uncertainty in hydrologic modeling: toward an integrated data assimilation framework. Water Resour Res 43(7):W07401 es_ES
dc.relation.references Madadgar S, Moradkhani H (2014) Improved Bayesian multimodeling: integration of copulas and Bayesian model averaging. Water Resour Res 50(12):9586–9603 es_ES
dc.relation.references Marin J-M, Pudlo P, Robert CP, Ryder RJ (2012) Approximate Bayesian computational methods. Stat Comput 22(6):1167–1180 es_ES
dc.relation.references Marjoram P, Molitor J, Plagnol V, Tavaré S (2003) Markov chain monte carlo without likelihoods. Proc Natl Acad Sci 100(26):15324–15328 es_ES
dc.relation.references Marshall L, Nott D, Sharma A (2004) A comparative study of Markov chain Monte Carlo methods for conceptual rainfall-runoff modeling. Water Resour Res 40(2):W02501 es_ES
dc.relation.references Mengersen KL, Pudlo P, Robert CP (2013) Bayesian computation via empirical likelihood. Proc Natl Acad Sci 110(4):1321–1326 es_ES
dc.relation.references Montanari A, Brath A (2004) A stochastic approach for assessing the uncertainty of rainfall-runoff simulations. Water Resour Res 40:W01106. https://doi.org/10.1029/2003WR002540 es_ES
dc.relation.references Montanari A, Grossi G (2008) Estimating the uncertainty of hydrological forecasts: a statistical approach. Water Resour Res 44:W00B08. https://doi.org/10.1029/2008WR006897 es_ES
dc.relation.references Montanari A, Koutsoyiannis D (2012) A blueprint for process-based modeling of uncertain hydrological systems. Water Resour Res 48(9):W09555 es_ES
dc.relation.references Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE 50(3):885–900 es_ES
dc.relation.references Nott DJ, Marshall L, Brown J (2011) Generalized likelihood uncertainty estimation (glue) and approximate Bayesian computation: what’s the connection? Water Resour Res 48(12):W12602 es_ES
dc.relation.references Price LF, Drovandi CC, Lee A, Nott DJ (2018) Bayesian synthetic likelihood. J Comput Graph Stat 27(1):1–11 es_ES
dc.relation.references Pritchard JK, Seielstad MT, Perez-Lezaun A, Feldman MW (1999) Population growth of human y chromosomes: a study of y chromosome microsatellites. Mol Biol Evol 16(12):1791–1798 es_ES
dc.relation.references R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria es_ES
dc.relation.references Raftery AE, Gneiting T, Balabdaoui F, Polakowski M (2005) Using Bayesian model averaging to calibrate forecast ensembles. Mon Weather Rev 133(5):1155–1174 es_ES
dc.relation.references Reichert P, Langhans SD, Lienert J, Schuwirth N (2015) The conceptual foundation of environmental decision support. J Environ Manag 154:316–332 es_ES
dc.relation.references Robert CP (2016) Approximate bayesian computation: A survey on recent results. In: Cools R, Nuyens D (eds) Monte Carlo and Quasi-Monte Carlo Methods. Springer, Cham, pp 185–205 es_ES
dc.relation.references Romero-Cuéllar J, Buitrago-Vargas A, Quintero-Ruiz T, Francés F (2018) Modelling the potential impacts of climate change on the hydrology of the Aipe river basin in Huila, Colombia. Ribagua 5(1):63–78 es_ES
dc.relation.references Schefzik R, Thorarinsdottir TL, Gneiting T (2013) Uncertainty quantification in complex simulation models using ensemble copula coupling. Stat Sci 28(4):616–640 es_ES
dc.relation.references Schoups G, Vrugt JA (2010) A formal likelihood function for parameter and predictive inference of hydrologic models with correlated, heteroscedastic, and non-Gaussian errors. Water Resour Res 46(10):W10531 es_ES
dc.relation.references Schoups G, van de Giesen NC, Savenije HHG (2008) Model complexity control for hydrologic prediction. Water Resour Res 44(12):W00B03 es_ES
dc.relation.references Shafii M, Tolson B, Matott LS (2014) Uncertainty-based multi-criteria calibration of rainfall-runoff models: a comparative study. Stoch Environ Res Risk Assess 28(6):1493–1510 es_ES
dc.relation.references Sikorska AE, Montanari A, Koutsoyiannis D (2015) Estimating the uncertainty of hydrological predictions through data-driven resampling techniques. J Hydrol Eng 20(1):A4014009 es_ES
dc.relation.references Sisson SA, Fan Y, Tanaka MM (2007) Sequential Monte Carlo without likelihoods. Proc Natl Acad Sci 104(6):1760–1765 es_ES
dc.relation.references Solomatine DP, Shrestha DL (2009) A novel method to estimate model uncertainty using machine learning techniques. Water Resour Res 45:W00B11. https://doi.org/10.1029/2008WR006839 es_ES
dc.relation.references Tavaré S, Balding DJ, Griffiths RC, Donnelly P (1997) Inferring coalescence times from DNA sequence data. Genetics 145(2):505–518 es_ES
dc.relation.references Thomas H (1981) Improved methods for national water assessment, water resources contract: WR15249270. Technical report, Harvard University, Cambridge es_ES
dc.relation.references Thyer M, Renard B, Kavetski D, Kuczera G, Franks SW, Srikanthan S (2009) Critical evaluation of parameter consistency and predictive uncertainty in hydrological modeling: a case study using Bayesian total error analysis. Water Resour Res 45:W00B14. https://doi.org/10.1029/2008WR006825 es_ES
dc.relation.references Tian Y, Nearing GS, Peters-Lidard CD, Harrison KW, Tang L (2016) Performance metrics, error modeling, and uncertainty quantification. Mon Weather Rev 144(2):607–613 es_ES
dc.relation.references Todini E (2008) A model conditional processor to assess predictive uncertainty in flood forecasting. Int J River Basin Manag 6(2):123–137 es_ES
dc.relation.references Tran M-N, Nott DJ, Kohn R (2017) Variational bayes with intractable likelihood. J Comput Graph Stat 26(4):873–882 es_ES
dc.relation.references Turner BM, Van Zandt T (2012) A tutorial on approximate Bayesian computation. J Math Psychol 56(2):69–85 es_ES
dc.relation.references van Oijen M (2017) Bayesian methods for quantifying and reducing uncertainty and error in forest models. Curr For Rep 3(4):269–280 es_ES
dc.relation.references Vélez JJ, Puricelli M, López Unzu F, Francés F (2009) Parameter extrapolation to ungauged basins with a hydrological distributed model in a regional framework. Hydrol Earth Syst Sci 13(2):229–246 es_ES
dc.relation.references Vrugt JA, Robinson BA (2007) Treatment of uncertainty using ensemble methods: comparison of sequential data assimilation and Bayesian model averaging. Water Resour Res 43(1):W01411 es_ES
dc.relation.references Vrugt JA, Sadegh M (2013) Toward diagnostic model calibration and evaluation: approximate Bayesian computation. Water Resour Res 49:4335–4345 es_ES
dc.relation.references Waerden BVD (1953) Order tests for the two-sample problem and their power. Indag Math Proc 56:80 es_ES
dc.relation.references Wagener T, Gupta HV (2005) Model identification for hydrological forecasting under uncertainty. Stoch Environ Res Risk Assess 19(6):378–387 es_ES
dc.relation.references Wang Q, Robertson D, Chiew FS (2009) A bayesian joint probability modeling approach for seasonal forecasting of streamflows at multiple sites. Water Resour Res 45(5):W05407 es_ES
dc.relation.references Weerts AH, Winsemius HC, Verkade JS (2011) Estimation of predictive hydrological uncertainty using quantile regression: examples from the national flood forecasting system (england and wales). Hydrol Earth Syst Sci 15(1):255–265 es_ES
dc.relation.references Wentao L, Qingyun D, Chiyuan M, Aizhong Y, Wei G, Zhenhua D (2017) A review on statistical postprocessing methods for hydrometeorological ensemble forecasting. Wiley Interdiscip Rev Water 4(6):e1246 es_ES
dc.relation.references Wilby RL, Harris I (2006) A framework for assessing uncertainties in climate change impacts: low-flow scenarios for the river thames, UK. Water Resour Res 42(2):W02419 es_ES
dc.relation.references Woldemeskel F, McInerney D, Lerat J, Thyer M, Kavetski D, Shin D, Tuteja N, Kuczera G (2018) Evaluating post-processing approaches for monthly and seasonal streamflow forecasts. Hydrol Earth Syst Sci 22:6257–6278. https://doi.org/10.5194/hess-22-6257-2018 es_ES
dc.relation.references Ye A, Duan Q, Yuan X, Wood EF, Schaake J (2014) Hydrologic post-processing of MOPEX streamflow simulations. J Hydrol 508:147–156 es_ES
dc.relation.references Yoon S, Cho W, Heo J-H, Kim CE (2010) A full bayesian approach to generalized maximum likelihood estimation of generalized extreme value distribution. Stoch Environ Res Risk Assess 24(5):761–770 es_ES
dc.relation.references Zhang X, Zhao K (2012) Bayesian neural networks for uncertainty analysis of hydrologic modeling: a comparison of two schemes. Water Resour Manag 26(8):2365–2382 es_ES
dc.relation.references Zhao L, Duan Q, Schaake J, Ye A, Xia J (2011) A hydrologic post-processor for ensemble streamflow predictions. Adv Geosci 29:51–59 es_ES
dc.relation.references Zhu W, Marin JM, Leisen F (2016) A bootstrap likelihood approach to Bayesian computation. Aust N Z J Stat 58(2):227–244 es_ES


This item appears in the following Collection(s)

Show simple item record