Resumen:
|
[ES] En la actualidad, uno de los principales desafíos a los que se enfrentan las grandes áreas metropolitanas es la congestión provocada por el tráfico, la cual se ha convertido en un problema importante al que se enfrentan ...[+]
[ES] En la actualidad, uno de los principales desafíos a los que se enfrentan las grandes áreas metropolitanas es la congestión provocada por el tráfico, la cual se ha convertido en un problema importante al que se enfrentan las autoridades de cada ciudad. Para abordar este problema es necesario implementar una solución eficiente para controlar el tráfico que genere beneficios para los ciudadanos, como reducir los tiempos de viaje de los vehículos y, en consecuencia, el consumo de combustible, el ruido, y la contaminación ambiental. De hecho, al analizar adecuadamente la demanda de tráfico, es posible predecir las condiciones futuras del tráfico, y utilizar esa información para la optimización de las rutas tomadas por los vehículos. Este enfoque puede ser especialmente efectivo si se aplica en el contexto de los vehículos autónomos, que tienen un comportamiento más predecible, lo cual permite a los administradores de la ciudad mitigar los efectos de la congestión, como es la contaminación, al mejorar el flujo de tráfico de manera totalmente centralizada.
La validación de este enfoque generalmente requiere el uso de simulaciones que deberían ser lo más realistas posible. Sin embargo, lograr altos grados de realismo puede ser complejo cuando los patrones de tráfico reales, definidos a través de una matriz de Origen/Destino (O-D) para los vehículos en una ciudad, son desconocidos, como ocurre la mayoría de las veces. Por lo tanto, la primera contribución de esta tesis es desarrollar una heurística iterativa para mejorar el modelado de la congestión de tráfico; a partir de las mediciones de bucle de inducción reales hechas por el Ayuntamiento de Valencia (España), pudimos generar una matriz O-D para la simulación de tráfico que se asemeja a la distribución de tráfico real.
Si fuera posible caracterizar el estado del tráfico prediciendo las condiciones futuras del tráfico para optimizar la ruta de los vehículos automatizados, y si se pudieran tomar estas medidas para mitigar de manera preventiva los efectos de la congestión con sus problemas relacionados, se podría mejorar el flujo de tráfico en general. Por lo tanto, la segunda contribución de esta tesis es desarrollar una Ecuación de Predicción de Tráfico para caracterizar el comportamiento en las diferentes calles de la ciudad en términos de tiempo de viaje con respecto al volumen de tráfico, y aplicar una regresión logística a esos datos para predecir las condiciones futuras del tráfico.
La tercera y última contribución de esta tesis apunta directamente al nuevo paradigma de gestión de tráfico previsto, tratándose de un servidor de rutas capaz de manejar todo el tráfico en una ciudad, y equilibrar los flujos de tráfico teniendo en cuenta las condiciones de congestión del tráfico presentes y futuras. Por lo tanto, realizamos un estudio de simulación con datos reales de congestión de tráfico en la ciudad de Valencia (España), para demostrar cómo se puede mejorar el flujo de tráfico en un día típico mediante la solución propuesta. Los resultados experimentales muestran que nuestra solución, combinada con una actualización frecuente de las condiciones del tráfico en el servidor de rutas, es capaz de lograr mejoras sustanciales en términos de velocidad promedio y tiempo de trayecto, ambos indicadores de un menor grado de congestión y de una mejor fluidez del tráfico.
[-]
[CA] En l'actualitat, un dels principals desafiaments als quals s'enfronten les grans àrees metropolitanes és la congestió provocada pel trànsit, que s'ha convertit en un problema important al qual s'enfronten les autoritats ...[+]
[CA] En l'actualitat, un dels principals desafiaments als quals s'enfronten les grans àrees metropolitanes és la congestió provocada pel trànsit, que s'ha convertit en un problema important al qual s'enfronten les autoritats de cada ciutat. Per a abordar aquest problema és necessari implementar una solució eficient per a controlar el trànsit que genere beneficis per als ciutadans, com reduir els temps de viatge dels vehicles i, en conseqüència, el consum de combustible, el soroll, i la contaminació ambiental. De fet, en analitzar adequadament la demanda de trànsit, és possible predir les condicions futures del trànsit, i utilitzar aqueixa informació per a l'optimització de les rutes preses pels vehicles. Aquest enfocament pot ser especialment efectiu si s'aplica en el context dels vehicles autònoms, que tenen un comportament més predictible, i això permet als administradors de la ciutat mitigar els efectes de la congestió, com és la contaminació, en millorar el flux de trànsit de manera totalment centralitzada.
La validació d'aquest enfocament generalment requereix l'ús de simulacions que haurien de ser el més realistes possible. No obstant això, aconseguir alts graus de realisme pot ser complex quan els patrons de trànsit reals, definits a través d'una matriu d'Origen/Destinació (O-D) per als vehicles en una ciutat, són desconeguts, com ocorre la majoria de les vegades. Per tant, la primera contribució d'aquesta tesi és desenvolupar una heurística iterativa per a millorar el modelatge de la congestió de trànsit; a partir dels mesuraments de bucle d'inducció reals fetes per l'Ajuntament de València (Espanya), vam poder generar una matriu O-D per a la simulació de trànsit que s'assembla a la distribució de trànsit real.
Si fóra possible caracteritzar l'estat del trànsit predient les condicions futures del trànsit per a optimitzar la ruta dels vehicles automatitzats, i si es pogueren prendre aquestes mesures per a mitigar de manera preventiva els efectes de la congestió amb els seus problemes relacionats, es podria millorar el flux de trànsit en general. Per tant, la segona contribució d'aquesta tesi és desenvolupar una Equació de Predicció de Trànsit per a caracteritzar el comportament en els diferents carrers de la ciutat en termes de temps de viatge respecte al volum de trànsit, i aplicar una regressió logística a aqueixes dades per a predir les condicions futures del trànsit.
La tercera i última contribució d'aquesta tesi apunta directament al nou paradigma de gestió de trànsit previst. Es tracta d'un servidor de rutes capaç de manejar tot el trànsit en una ciutat, i equilibrar els fluxos de trànsit tenint en compte les condicions de congestió del trànsit presents i futures. Per tant, realitzem un estudi de simulació amb dades reals de congestió de trànsit a la ciutat de València (Espanya), per a demostrar com es pot millorar el flux de trànsit en un dia típic mitjançant la solució proposada. Els resultats experimentals mostren que la nostra solució, combinada amb una actualització freqüent de les condicions del trànsit en el servidor de rutes, és capaç d'aconseguir millores substancials en termes de velocitat faig una mitjana i de temps de trajecte, tots dos indicadors d'un grau menor de congestió i d'una fluïdesa millor del trànsit.
[-]
[EN] Currently, one of the main challenges that large metropolitan areas have to face is traffic congestion, which has become an important problem faced by city authorities. To address this problem, it becomes necessary ...[+]
[EN] Currently, one of the main challenges that large metropolitan areas have to face is traffic congestion, which has become an important problem faced by city authorities. To address this problem, it becomes necessary to implement an efficient solution to control traffic that generates benefits for citizens, such as reducing vehicle journey times and, consequently, use of fuel, noise and environmental pollution. In fact, by properly analyzing traffic demand, it becomes possible to predict future traffic conditions, and to use that information for the optimization of the routes taken by vehicles. Such an approach becomes especially effective if applied in the context of autonomous vehicles, which have a more predictable behavior, thus enabling city management entities to mitigate the effects of traffic congestion and pollution by improving the traffic flow in a city in a fully centralized manner.
Validating this approach typically requires the use of simulations, which should be as realistic as possible. However, achieving high degrees of realism can be complex when the actual traffic patterns, defined through an Origin/Destination (O-D) matrix for the vehicles in a city, are unknown, as occurs most of the times. Thus, the first contribution of this thesis is to develop an iterative heuristic for improving traffic congestion modeling; starting from real induction loop measurements made available by the City Hall of Valencia, Spain, we were able to generate an O-D matrix for traffic simulation that resembles the real traffic distribution.
If it were possible to characterize the state of traffic by predicting future traffic conditions for optimizing the route of automated vehicles, and if these measures could be taken to preventively mitigate the effects of congestion with its related problems, the overall traffic flow could be improved. Thereby, the second contribution of this thesis was to develop a Traffic Prediction Equation to characterize the different streets of a city in terms of travel time with respect to the vehicle load, and applying logistic regression to those data to predict future traffic conditions.
The third and last contribution of this thesis towards our envisioned traffic management paradigm was a route server capable of handling all the traffic in a city, and balancing traffic flows by accounting for present and future traffic congestion conditions. Thus, we perform a simulation study using real data of traffic congestion in the city of Valencia, Spain, to demonstrate how the traffic flow in a typical day can be improved using our proposed solution. Experimental results show that our proposed solution, combined with frequent updating of traffic conditions on the route server, is able to achieve substantial improvements in terms of average travel speeds and travel times, both indicators of lower degrees of congestion and improved traffic fluidity.
[-]
|