- -

CONTRIBUTIONS TO EFFICIENT AUTOMATIC TRANSCRIPTION OF VIDEO LECTURES

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

CONTRIBUTIONS TO EFFICIENT AUTOMATIC TRANSCRIPTION OF VIDEO LECTURES

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.advisor Juan Císcar, Alfonso es_ES
dc.contributor.advisor Sanchis Navarro, José Alberto es_ES
dc.contributor.author Agua Teba, Miguel Ángel del es_ES
dc.date.accessioned 2019-11-04T14:46:29Z
dc.date.available 2019-11-04T14:46:29Z
dc.date.created 2019-09-27 es_ES
dc.date.issued 2019-11-04 es_ES
dc.identifier.uri http://hdl.handle.net/10251/130198
dc.description Tesis por compendio es_ES
dc.description.abstract [ES] Durante los últimos años, los repositorios multimedia en línea se han convertido en fuentes clave de conocimiento gracias al auge de Internet, especialmente en el área de la educación. Instituciones educativas de todo el mundo han dedicado muchos recursos en la búsqueda de nuevos métodos de enseñanza, tanto para mejorar la asimilación de nuevos conocimientos, como para poder llegar a una audiencia más amplia. Como resultado, hoy en día disponemos de diferentes repositorios con clases grabadas que siven como herramientas complementarias en la enseñanza, o incluso pueden asentar una nueva base en la enseñanza a distancia. Sin embargo, deben cumplir con una serie de requisitos para que la experiencia sea totalmente satisfactoria y es aquí donde la transcripción de los materiales juega un papel fundamental. La transcripción posibilita una búsqueda precisa de los materiales en los que el alumno está interesado, se abre la puerta a la traducción automática, a funciones de recomendación, a la generación de resumenes de las charlas y además, el poder hacer llegar el contenido a personas con discapacidades auditivas. No obstante, la generación de estas transcripciones puede resultar muy costosa. Con todo esto en mente, la presente tesis tiene como objetivo proporcionar nuevas herramientas y técnicas que faciliten la transcripción de estos repositorios. En particular, abordamos el desarrollo de un conjunto de herramientas de reconocimiento de automático del habla, con énfasis en las técnicas de aprendizaje profundo que contribuyen a proporcionar transcripciones precisas en casos de estudio reales. Además, se presentan diferentes participaciones en competiciones internacionales donde se demuestra la competitividad del software comparada con otras soluciones. Por otra parte, en aras de mejorar los sistemas de reconocimiento, se propone una nueva técnica de adaptación de estos sistemas al interlocutor basada en el uso Medidas de Confianza. Esto además motivó el desarrollo de técnicas para la mejora en la estimación de este tipo de medidas por medio de Redes Neuronales Recurrentes. Todas las contribuciones presentadas se han probado en diferentes repositorios educativos. De hecho, el toolkit transLectures-UPV es parte de un conjunto de herramientas que sirve para generar transcripciones de clases en diferentes universidades e instituciones españolas y europeas. es_ES
dc.description.abstract [CA] Durant els últims anys, els repositoris multimèdia en línia s'han convertit en fonts clau de coneixement gràcies a l'expansió d'Internet, especialment en l'àrea de l'educació. Institucions educatives de tot el món han dedicat molts recursos en la recerca de nous mètodes d'ensenyament, tant per millorar l'assimilació de nous coneixements, com per poder arribar a una audiència més àmplia. Com a resultat, avui dia disposem de diferents repositoris amb classes gravades que serveixen com a eines complementàries en l'ensenyament, o fins i tot poden assentar una nova base a l'ensenyament a distància. No obstant això, han de complir amb una sèrie de requisits perquè la experiència siga totalment satisfactòria i és ací on la transcripció dels materials juga un paper fonamental. La transcripció possibilita una recerca precisa dels materials en els quals l'alumne està interessat, s'obri la porta a la traducció automàtica, a funcions de recomanació, a la generació de resums de les xerrades i el poder fer arribar el contingut a persones amb discapacitats auditives. No obstant, la generació d'aquestes transcripcions pot resultar molt costosa. Amb això en ment, la present tesi té com a objectiu proporcionar noves eines i tècniques que faciliten la transcripció d'aquests repositoris. En particular, abordem el desenvolupament d'un conjunt d'eines de reconeixement automàtic de la parla, amb èmfasi en les tècniques d'aprenentatge profund que contribueixen a proporcionar transcripcions precises en casos d'estudi reals. A més, es presenten diferents participacions en competicions internacionals on es demostra la competitivitat del programari comparada amb altres solucions. D'altra banda, per tal de millorar els sistemes de reconeixement, es proposa una nova tècnica d'adaptació d'aquests sistemes a l'interlocutor basada en l'ús de Mesures de Confiança. A més, això va motivar el desenvolupament de tècniques per a la millora en l'estimació d'aquest tipus de mesures per mitjà de Xarxes Neuronals Recurrents. Totes les contribucions presentades s'han provat en diferents repositoris educatius. De fet, el toolkit transLectures-UPV és part d'un conjunt d'eines que serveix per generar transcripcions de classes en diferents universitats i institucions espanyoles i europees. ca_ES
dc.description.abstract [EN] During the last years, on-line multimedia repositories have become key knowledge assets thanks to the rise of Internet and especially in the area of education. Educational institutions around the world have devoted big efforts to explore different teaching methods, to improve the transmission of knowledge and to reach a wider audience. As a result, online video lecture repositories are now available and serve as complementary tools that can boost the learning experience to better assimilate new concepts. In order to guarantee the success of these repositories the transcription of each lecture plays a very important role because it constitutes the first step towards the availability of many other features. This transcription allows the searchability of learning materials, enables the translation into another languages, provides recommendation functions, gives the possibility to provide content summaries, guarantees the access to people with hearing disabilities, etc. However, the transcription of these videos is expensive in terms of time and human cost. To this purpose, this thesis aims at providing new tools and techniques that ease the transcription of these repositories. In particular, we address the development of a complete Automatic Speech Recognition Toolkit with an special focus on the Deep Learning techniques that contribute to provide accurate transcriptions in real-world scenarios. This toolkit is tested against many other in different international competitions showing comparable transcription quality. Moreover, a new technique to improve the recognition accuracy has been proposed which makes use of Confidence Measures, and constitutes the spark that motivated the proposal of new Confidence Measures techniques that helped to further improve the transcription quality. To this end, a new speaker-adapted confidence measure approach was proposed for models based on Recurrent Neural Networks. The contributions proposed herein have been tested in real-life scenarios in different educational repositories. In fact, the transLectures-UPV toolkit is part of a set of tools for providing video lecture transcriptions in many different Spanish and European universities and institutions. en_EN
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject PoliMedia es_ES
dc.subject Machine Learning es_ES
dc.subject Deep Learning es_ES
dc.subject Deep Neural Networks es_ES
dc.subject Recurrent Neural Networks es_ES
dc.subject Reconocimiento del Habla es_ES
dc.subject Automatic Speech Recognition es_ES
dc.subject Medidas de Confianza es_ES
dc.subject Confidence Measures es_ES
dc.subject Redes Neuronales es_ES
dc.subject MOOCs es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title CONTRIBUTIONS TO EFFICIENT AUTOMATIC TRANSCRIPTION OF VIDEO LECTURES es_ES
dc.type Tesis doctoral es_ES
dc.identifier.doi 10.4995/Thesis/10251/130198 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Agua Teba, MÁD. (2019). CONTRIBUTIONS TO EFFICIENT AUTOMATIC TRANSCRIPTION OF VIDEO LECTURES [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/130198 es_ES
dc.description.accrualMethod TESIS es_ES
dc.type.version info:eu-repo/semantics/acceptedVersion es_ES
dc.relation.pasarela TESIS\10772 es_ES
dc.description.compendio Compendio es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem