- -

New optimal controller tuning method for an AVR system using a simplified Ant Colony Optimization with a new constrained Nelder-Mead algorithm

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

New optimal controller tuning method for an AVR system using a simplified Ant Colony Optimization with a new constrained Nelder-Mead algorithm

Show simple item record

Files in this item

dc.contributor.author Blondin, Maude Joseé es_ES
dc.contributor.author Sanchís Saez, Javier es_ES
dc.contributor.author Sicard, Pierre es_ES
dc.contributor.author Herrero Durá, Juan Manuel es_ES
dc.date.accessioned 2019-12-13T21:00:41Z
dc.date.available 2019-12-13T21:00:41Z
dc.date.issued 2018 es_ES
dc.identifier.issn 1568-4946 es_ES
dc.identifier.uri http://hdl.handle.net/10251/132934
dc.description.abstract [EN] In this paper, an optimal gain tuning method for PID controllers is proposed using a novel combination of a simplified Ant Colony Optimization algorithm and Nelder¿Mead method (ACO-NM) including a new procedure to constrain NM. To address Proportional-Integral-Derivative (PID) controller tuning for the Automatic Voltage Regulator (AVR) system, this paper presents a meta-analysis of the literature on PID parameter sets solving the AVR problem. The investigation confirms that the proposed ACO-NM obtains better or equivalent PID solutions and exhibits higher computational efficiency than previously published methods. The proposed ACO-NM application is extended to realistic conditions by considering robustness to AVR process parameters, control signal saturation and noisy measurements as well as tuning a two-degree-of-freedom PID controller (2DOF-PID). For this type of PID, a new objective function is also proposed to manage control signal constraints. Finally, real time control experiments confirm the performance of the proposed 2DOF-PIDs in quasi-real conditions. Furthermore, the efficiency of the algorithm is confirmed by comparing its results to other optimization algorithms and NM combinations using benchmark functions. es_ES
dc.description.sponsorship This work was supported by the Vanier Canada Graduate Scholarship, the Michael Smith Foreign Study Supplements Program from the Natural Sciences and Engineering Research Council of Canada and by the Ministerio de Economia y Competitividad (Spain), project DPI2015-71443-R. It was also supported by the Bourse Mobilite Etudiante from Ministere de l'Education du Quebec, the CEMF Claudette MacKay-Lassonde Graduate Engineering Ambassador Award and the SWAAC Bourseau merite pour etudiantes de cycles superieurs. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Applied Soft Computing es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Automatic voltage regulator es_ES
dc.subject PID controller es_ES
dc.subject Optimization es_ES
dc.subject Nelder-Mead algorithm es_ES
dc.subject Ant Colony Optimizationa es_ES
dc.subject.classification INGENIERIA DE SISTEMAS Y AUTOMATICA es_ES
dc.title New optimal controller tuning method for an AVR system using a simplified Ant Colony Optimization with a new constrained Nelder-Mead algorithm es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.asoc.2017.10.007 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DPI2015-71443-R/ES/DESARROLLO DE HERRAMIENTAS AVANZADAS PARA METODOLOGIAS DE DISEÑO Y OPTIMIZACION MULTIOBJETIVO EN INGENIERIA DE CONTROL. APLICACION A SISTEMAS MULTIVARIABLES./ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica es_ES
dc.description.bibliographicCitation Blondin, MJ.; Sanchís Saez, J.; Sicard, P.; Herrero Durá, JM. (2018). New optimal controller tuning method for an AVR system using a simplified Ant Colony Optimization with a new constrained Nelder-Mead algorithm. Applied Soft Computing. 62:216-229. https://doi.org/10.1016/j.asoc.2017.10.007 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.asoc.2017.10.007 es_ES
dc.description.upvformatpinicio 216 es_ES
dc.description.upvformatpfin 229 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 62 es_ES
dc.relation.pasarela S\350575 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES


This item appears in the following Collection(s)

Show simple item record