- -

Optimization of the Multi-Start Strategy of a Direct-Search Algorithm for the Calibration of Rainfall-Runoff Models for Water-Resource Assessment

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Optimization of the Multi-Start Strategy of a Direct-Search Algorithm for the Calibration of Rainfall-Runoff Models for Water-Resource Assessment

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Garcia-Romero, Liliana es_ES
dc.contributor.author Paredes Arquiola, Javier es_ES
dc.contributor.author Solera Solera, Abel es_ES
dc.contributor.author Belda-Ibañez, Edgar es_ES
dc.contributor.author Andreu Álvarez, Joaquín es_ES
dc.contributor.author Sanchez-Quispe, Sonia T. es_ES
dc.date.accessioned 2019-12-15T21:01:39Z
dc.date.available 2019-12-15T21:01:39Z
dc.date.issued 2019 es_ES
dc.identifier.issn 2073-4441 es_ES
dc.identifier.uri http://hdl.handle.net/10251/133001
dc.description.abstract [EN] Calibration of conceptual rainfall-runoff models (CRRM) for water-resource assessment (WRA) is a complicated task that contributes to the reliability of results obtained from catchments. In recent decades, the application of automatic calibration techniques has been frequently used because of the increasing complexity of models and the considerable time savings gained at this phase. In this work, the traditional Rosenbrock (RNB) algorithm is combined with a random sampling method and the Latin hypercube (LH) to optimize a multi-start strategy and test the efficiency in the calibration of CRRMs. Three models (the French rural-engineering-with-four-daily-parameters (GR4J) model, the Swedish Hydrological Office Water-balance Department (HBV) model and the Sacramento Soil Moisture Accounting (SAC-SMA) model) are selected for WRA at nine headwaters in Spain in zones prone to long and severe droughts. To assess the results, the University of Arizona's shuffled complex evolution (SCE-UA) algorithm was selected as a benchmark, because, until now, it has been one of the most robust techniques used to solve calibration problems with rainfall-runoff models. This comparison shows that the traditional algorithm can find optimal solutions at least as good as the SCE-UA algorithm. In fact, with the calibration of the SAC-SMA model, the results are significantly different: The RNB algorithm found better solutions than the SCE-UA for all basins. Finally, the combination created between the LH and RNB methods is detailed thoroughly, and a sensitivity analysis of its parameters is used to define the set of optimal values for its efficient performance. es_ES
dc.description.sponsorship The authors wish to thank the Spanish Research Agency (MINECO) for the financial support to ERAS project (CTM2016-77804-P, including EU-FEDER funds). Additionally, we also value the support provided by the European Community in financing the project IMPREX (H2020-WATER-2014-2015, 641811). The first author would like to express her gratitude to the National Council of Science and Technology of Mexico (CONACyT) for financial support for her Ph.D. studies. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Water es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Calibration es_ES
dc.subject Rainfall-runoff models es_ES
dc.subject Multi-start es_ES
dc.subject Latin hypercube es_ES
dc.subject Rosenbrock es_ES
dc.subject Water-resource assessment es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.title Optimization of the Multi-Start Strategy of a Direct-Search Algorithm for the Calibration of Rainfall-Runoff Models for Water-Resource Assessment es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/w11091876 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/641811/EU/IMproving PRedictions and management of hydrological EXtremes/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTM2016-77804-P/ES/ESTIMACION DEL RIESGO AMBIENTAL FRENTE A LAS SEQUIAS Y EL CAMBIO CLIMATICO/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient es_ES
dc.description.bibliographicCitation Garcia-Romero, L.; Paredes Arquiola, J.; Solera Solera, A.; Belda-Ibañez, E.; Andreu Álvarez, J.; Sanchez-Quispe, ST. (2019). Optimization of the Multi-Start Strategy of a Direct-Search Algorithm for the Calibration of Rainfall-Runoff Models for Water-Resource Assessment. Water. 11(9):1-26. https://doi.org/10.3390/w11091876 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/w11091876 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 26 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 9 es_ES
dc.relation.pasarela S\393267 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem