- -

WH-EA: An Evolutionary Algorithm for Wiener-Hammerstein System Identification

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

WH-EA: An Evolutionary Algorithm for Wiener-Hammerstein System Identification

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Zambrano-Abad, Julio Cesar es_ES
dc.contributor.author Sanchís Saez, Javier es_ES
dc.contributor.author Herrero Durá, Juan Manuel es_ES
dc.contributor.author Martínez Iranzo, Miguel Andrés es_ES
dc.date.accessioned 2019-12-19T21:01:47Z
dc.date.available 2019-12-19T21:01:47Z
dc.date.issued 2018 es_ES
dc.identifier.issn 1076-2787 es_ES
dc.identifier.uri http://hdl.handle.net/10251/133374
dc.description.abstract [EN] Current methods to identify Wiener-Hammerstein systems using Best Linear Approximation (BLA) involve at least two steps. First, BLA is divided into obtaining front and back linear dynamics of the Wiener-Hammerstein model. Second, a re tting procedure of all parameters is carried out to reduce modelling errors. In this paper, a novel approach to identify Wiener-Hammerstein systems in a single step is proposed. is approach is based on a customized evolutionary algorithm (WH-EA) able to look for the best BLA split, capturing at the same time the process static nonlinearity with high precision. Furthermore, to correct possible errors in BLA estimation, the locations of poles and zeros are subtly modi ed within an adequate search space to allow a ne-tuning of the model. e performance of the proposed approach is analysed by using a demonstration example and a nonlinear system identi cation benchmark. es_ES
dc.description.sponsorship This work was partially supported by the Spanish Ministry of Economy and Competitiveness (Project DPI2015-71443-R) and Salesian Polytechnic University of Ecuador through a Ph.D. scholarship granted to the first author. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Complexity es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject.classification INGENIERIA DE SISTEMAS Y AUTOMATICA es_ES
dc.title WH-EA: An Evolutionary Algorithm for Wiener-Hammerstein System Identification es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1155/2018/1753262 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DPI2015-71443-R/ES/DESARROLLO DE HERRAMIENTAS AVANZADAS PARA METODOLOGIAS DE DISEÑO Y OPTIMIZACION MULTIOBJETIVO EN INGENIERIA DE CONTROL. APLICACION A SISTEMAS MULTIVARIABLES./ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica es_ES
dc.description.bibliographicCitation Zambrano-Abad, JC.; Sanchís Saez, J.; Herrero Durá, JM.; Martínez Iranzo, MA. (2018). WH-EA: An Evolutionary Algorithm for Wiener-Hammerstein System Identification. Complexity. 2018:1-17. https://doi.org/10.1155/2018/1753262 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1155/2018/1753262 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 17 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2018 es_ES
dc.relation.pasarela S\353641 es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.description.references Mora, L. A., & Amaya, J. E. (2017). Un Nuevo Método de Identificación Basado en la Respuesta Escalón en Lazo Abierto de Sistemas Sobre-amortiguados. Revista Iberoamericana de Automática e Informática Industrial RIAI, 14(1), 31-43. doi:10.1016/j.riai.2016.09.006 es_ES
dc.description.references Liu, T., Wang, Q.-G., & Huang, H.-P. (2013). A tutorial review on process identification from step or relay feedback test. Journal of Process Control, 23(10), 1597-1623. doi:10.1016/j.jprocont.2013.08.003 es_ES
dc.description.references Karnopp, D. C., Margolis, D. L., & Rosenberg, R. C. (2012). System Dynamics. doi:10.1002/9781118152812 es_ES
dc.description.references Bonilla, J., Roca, L., de la Calle, A., & Dormido, S. (2017). Modelo Dinámico de un Recuperador de Gases -Sales Fundidas para una Planta Termosolar Híbrida de Energías Renovables. Revista Iberoamericana de Automática e Informática Industrial RIAI, 14(1), 70-81. doi:10.1016/j.riai.2016.11.003 es_ES
dc.description.references Billings, S. A., & Fakhouri, S. Y. (1982). Identification of systems containing linear dynamic and static nonlinear elements. Automatica, 18(1), 15-26. doi:10.1016/0005-1098(82)90022-x es_ES
dc.description.references Lopes dos Santos, P., A. Ramos, J., & Martins de Carvalho, J. L. (2012). Identification of a Benchmark Wiener–Hammerstein: A bilinear and Hammerstein–Bilinear model approach. Control Engineering Practice, 20(11), 1156-1164. doi:10.1016/j.conengprac.2012.04.002 es_ES
dc.description.references Kalafatis, A., Arifin, N., Wang, L., & Cluett, W. R. (1995). A new approach to the identification of pH processes based on the Wiener model. Chemical Engineering Science, 50(23), 3693-3701. doi:10.1016/0009-2509(95)00214-p es_ES
dc.description.references Jurado, F. (2006). A method for the identification of solid oxide fuel cells using a Hammerstein model. Journal of Power Sources, 154(1), 145-152. doi:10.1016/j.jpowsour.2005.04.005 es_ES
dc.description.references Boubaker, S. (2017). Identification of nonlinear Hammerstein system using mixed integer-real coded particle swarm optimization: application to the electric daily peak-load forecasting. Nonlinear Dynamics, 90(2), 797-814. doi:10.1007/s11071-017-3693-9 es_ES
dc.description.references S Gaya, M. (2017). Estimation of Turbidity in Water Treatment Plant using Hammerstein-Wiener and Neural Network Technique. Indonesian Journal of Electrical Engineering and Computer Science, 5(3), 666. doi:10.11591/ijeecs.v5.i3.pp666-672 es_ES
dc.description.references Bai, E.-W., Cai, Z., Dudley-Javorosk, S., & Shields, R. K. (2009). Identification of a modified Wiener–Hammerstein system and its application in electrically stimulated paralyzed skeletal muscle modeling. Automatica, 45(3), 736-743. doi:10.1016/j.automatica.2008.09.023 es_ES
dc.description.references Haryanto, A., & Hong, K.-S. (2013). Maximum likelihood identification of Wiener–Hammerstein models. Mechanical Systems and Signal Processing, 41(1-2), 54-70. doi:10.1016/j.ymssp.2013.07.008 es_ES
dc.description.references Gómez, J. C., Jutan, A., & Baeyens, E. (2004). Wiener model identification and predictive control of a pH neutralisation process. IEE Proceedings - Control Theory and Applications, 151(3), 329-338. doi:10.1049/ip-cta:20040438 es_ES
dc.description.references Li, S., & Li, Y. (2016). Model predictive control of an intensified continuous reactor using a neural network Wiener model. Neurocomputing, 185, 93-104. doi:10.1016/j.neucom.2015.12.048 es_ES
dc.description.references Zhang, Q., Wang, Q., & Li, G. (2016). Nonlinear modeling and predictive functional control of Hammerstein system with application to the turntable servo system. Mechanical Systems and Signal Processing, 72-73, 383-394. doi:10.1016/j.ymssp.2015.09.011 es_ES
dc.description.references Ławryńczuk, M. (2016). Nonlinear predictive control of dynamic systems represented by Wiener–Hammerstein models. Nonlinear Dynamics, 86(2), 1193-1214. doi:10.1007/s11071-016-2957-0 es_ES
dc.description.references Schoukens, M., Pintelon, R., & Rolain, Y. (2014). Identification of Wiener–Hammerstein systems by a nonparametric separation of the best linear approximation. Automatica, 50(2), 628-634. doi:10.1016/j.automatica.2013.12.027 es_ES
dc.description.references Vanbeylen, L. (2014). A fractional approach to identify Wiener–Hammerstein systems. Automatica, 50(3), 903-909. doi:10.1016/j.automatica.2013.12.013 es_ES
dc.description.references Sjöberg, J., Lauwers, L., & Schoukens, J. (2012). Identification of Wiener–Hammerstein models: Two algorithms based on the best split of a linear model applied to the SYSID’09 benchmark problem. Control Engineering Practice, 20(11), 1119-1125. doi:10.1016/j.conengprac.2012.07.001 es_ES
dc.description.references Westwick, D. T., & Schoukens, J. (2012). Initial estimates of the linear subsystems of Wiener–Hammerstein models. Automatica, 48(11), 2931-2936. doi:10.1016/j.automatica.2012.06.091 es_ES
dc.description.references Tan, A. H., Wong, H. K., & Godfrey, K. (2012). Identification of a Wiener–Hammerstein system using an incremental nonlinear optimisation technique. Control Engineering Practice, 20(11), 1140-1148. doi:10.1016/j.conengprac.2012.04.007 es_ES
dc.description.references Naitali, A., & Giri, F. (2015). Wiener–Hammerstein system identification – an evolutionary approach. International Journal of Systems Science, 47(1), 45-61. doi:10.1080/00207721.2015.1027758 es_ES
dc.description.references Schoukens, J., Lataire, J., Pintelon, R., Vandersteen, G., & Dobrowiecki, T. (2009). Robustness Issues of the Best Linear Approximation of a Nonlinear System. IEEE Transactions on Instrumentation and Measurement, 58(5), 1737-1745. doi:10.1109/tim.2009.2012948 es_ES
dc.description.references Ljung, L., & Singh, R. (2012). Version 8 of the Matlab System Identification Toolbox. IFAC Proceedings Volumes, 45(16), 1826-1831. doi:10.3182/20120711-3-be-2027.00061 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem