- -

Kernel-Partial Least Squares regression coupled to pseudo-sample trajectories for the analysis of mixture designs of experiments

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Kernel-Partial Least Squares regression coupled to pseudo-sample trajectories for the analysis of mixture designs of experiments

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Vitale, Raffaele es_ES
dc.contributor.author Palací-López, Daniel Gonzalo es_ES
dc.contributor.author Kerkenaar, Harmen es_ES
dc.contributor.author Postma, GJ es_ES
dc.contributor.author Buydens, Lutgarde es_ES
dc.contributor.author Ferrer, Alberto es_ES
dc.date.accessioned 2019-12-19T21:02:12Z
dc.date.available 2019-12-19T21:02:12Z
dc.date.issued 2018 es_ES
dc.identifier.issn 0169-7439 es_ES
dc.identifier.uri http://hdl.handle.net/10251/133377
dc.description.abstract [EN] This article explores the potential of Kernel-Partial Least Squares (K-PLS) regression for the analysis of data proceeding from mixture designs of experiments. Gower's idea of pseudo-sample trajectories is exploited for interpretation purposes. The results show that, when the datasets under study are affected by severe nonlinearities and comprise few observations, the proposed approach can represent a feasible lternative to classical methodologies (i.e. Scheffe polynomial fitting by means of Ordinary Least Squares - OLS - and Cox polynomial fitting by means of Partial Least Squares - PLS). Furthermore, a way of recovering the parameters of a Scheffe model (provided that it holds and has the same complexity as the K-PLS one) from the trend of the aforementioned pseudo-sample trajectories is illustrated via a simulated case-study. es_ES
dc.description.sponsorship This research work was partially supported by the Spanish Ministry of Economy and Competitiveness under the project DPI2014-55276-C5-1R and Shell Global Solutions International B.V. (Amsterdam, The Netherlands). es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Chemometrics and Intelligent Laboratory Systems es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Mixture designs of experiments es_ES
dc.subject Kernel-Partial Least Squares (K-PLS) es_ES
dc.subject Pseudo-sample trajectories es_ES
dc.subject Scheffe and Cox polynomials es_ES
dc.subject Partial Least Squares (PLS) es_ES
dc.subject Ordinary Least Squares (OLS) es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.title Kernel-Partial Least Squares regression coupled to pseudo-sample trajectories for the analysis of mixture designs of experiments es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.chemolab.2018.02.002 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DPI2014-55276-C5-1-R/ES/BIOLOGIA SINTETICA PARA LA MEJORA EN BIOPRODUCCION: DISEÑO, OPTIMIZACION, MONITORIZACION Y CONTROL/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat es_ES
dc.description.bibliographicCitation Vitale, R.; Palací-López, DG.; Kerkenaar, H.; Postma, G.; Buydens, L.; Ferrer, A. (2018). Kernel-Partial Least Squares regression coupled to pseudo-sample trajectories for the analysis of mixture designs of experiments. Chemometrics and Intelligent Laboratory Systems. 175:37-46. https://doi.org/10.1016/j.chemolab.2018.02.002 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.chemolab.2018.02.002 es_ES
dc.description.upvformatpinicio 37 es_ES
dc.description.upvformatpfin 46 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 175 es_ES
dc.relation.pasarela S\362405 es_ES
dc.contributor.funder Shell Global Solutions International B.V. es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem