- -

Discrimination of skin cancer cells using Fourier transform infrared spectroscopy

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Discrimination of skin cancer cells using Fourier transform infrared spectroscopy

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Peñaranda, Francisco es_ES
dc.contributor.author Naranjo Ornedo, Valeriana es_ES
dc.contributor.author Lloyd, Gavin R. es_ES
dc.contributor.author Kastl, Lena es_ES
dc.contributor.author Kemper, Björn es_ES
dc.contributor.author Schnekenburger, Jürgen es_ES
dc.contributor.author Nallala, Jayakrupakar es_ES
dc.contributor.author Stone, Nick es_ES
dc.date.accessioned 2019-12-20T21:00:51Z
dc.date.available 2019-12-20T21:00:51Z
dc.date.issued 2018 es_ES
dc.identifier.issn 0010-4825 es_ES
dc.identifier.uri http://hdl.handle.net/10251/133516
dc.description.abstract [EN] Fourier transform infrared DO spectroscopy is a highly versatile tool for cell and tissue analysis. Modern commercial FTIR microspectroscopes allow the acquisition of good-quality hyperspectral images from cytopathological samples within relatively short times. This study aims at assessing the abilities of FTIR spectra to discriminate different types of cultured skin cell lines by different computer analysis technologies. In particular, 22700 single skin cells, belonging to two non-tumoral and two tumoral cell lines, were analysed. These cells were prepared in three different batches that included each cell type. Different spectral preprocessing and classification strategies were considered, including the current standard approaches to reduce Mie scattering artefacts. Special care was taken for the optimisation, training and evaluation of the learning models in order to avoid possible overfitting. Excellent classification performance (balanced accuracy between 0.85 and 0.95) was achieved when the algorithms were trained and tested with the cells from the same batch. When cells from different batches were used for training and testing the balanced accuracy reached values between 0.35 and 0.6, demonstrating the strong influence of sample preparation on the results and comparability of cell FTIR spectra. A deep study of the most optimistic results was performed in order to identify perturbations that influenced the final classification. es_ES
dc.description.sponsorship This research has been supported by the European Commission under the Seventh Framework Programme, Project MINERVA (317803; http://minerva-project.eu/). es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Computers in Biology and Medicine es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Machine learning es_ES
dc.subject Multivariate analysis es_ES
dc.subject Cancer diagnosis es_ES
dc.subject Cytopathology es_ES
dc.subject Fourier transform infrared spectroscopy es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Discrimination of skin cancer cells using Fourier transform infrared spectroscopy es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.compbiomed.2018.06.023 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/317803/EU/MId- to NEaR infrared spectroscopy for improVed medical diAgnostics/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Peñaranda, F.; Naranjo Ornedo, V.; Lloyd, GR.; Kastl, L.; Kemper, B.; Schnekenburger, J.; Nallala, J.... (2018). Discrimination of skin cancer cells using Fourier transform infrared spectroscopy. Computers in Biology and Medicine. 100:50-61. https://doi.org/10.1016/j.compbiomed.2018.06.023 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.compbiomed.2018.06.023 es_ES
dc.description.upvformatpinicio 50 es_ES
dc.description.upvformatpfin 61 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 100 es_ES
dc.relation.pasarela S\367681 es_ES
dc.contributor.funder European Commission es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem