- -

Retinal network characterization through fundus image processing: Significant point identification on vessel centerline

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Retinal network characterization through fundus image processing: Significant point identification on vessel centerline

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Morales, Sandra es_ES
dc.contributor.author Naranjo Ornedo, Valeriana es_ES
dc.contributor.author Angulo, Jesus es_ES
dc.contributor.author Legaz-Aparicio, Alvar-Gines es_ES
dc.contributor.author Verdu-Monedero, Rafael es_ES
dc.date.accessioned 2019-12-28T21:01:01Z
dc.date.available 2019-12-28T21:01:01Z
dc.date.issued 2017 es_ES
dc.identifier.issn 0923-5965 es_ES
dc.identifier.uri http://hdl.handle.net/10251/133756
dc.description.abstract [EN] This paper describes a new approach for significant point identification on vessel centerline. Significant points such as bifurcations and crossovers are able to define and characterize the retinal vascular network. In particular, hit-or-miss transformation is used to detect terminal, bifurcation and simple crossing points but a post-processing stage is needed to identify complex intersections. This stage focuses on the idea that the intersection of two vessels creates a sort of close loop formed by the vessels and this effect can be used to differentiate a bifurcation from a crossover. Experimental results show quantitative improvements by increasing the number of true positives and reducing the false positives and negatives in the significant point detection when the proposed method is compared with another state-of-the-art work. A sensitivity equal to 1 and a predictive positive value of 0.908 was achieved in the analyzed cases. Hit-or-miss transformation must be applied on a binary skeleton image. Therefore, a method to extract the vessel skeleton in a direct way is also proposed. Although the identification of the significant points of the retinal tree can be useful by itself for multiple applications such as biometrics and image registration, this paper presents an algorithm that makes use of the significant points to measure the bifurcation angles of the retinal network which can be related to cardiovascular risk determination. es_ES
dc.description.sponsorship This work was supported by the Ministerio de Economia y Conipetitividad of Spain, Project ACRIMA (TIN2013-46751-R). The authors would like to thank people who provide the public databases used in this work (DRIVE, STARE and VARIA). es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Signal Processing: Image Communication es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Retinal skeleton es_ES
dc.subject Vessel centerline es_ES
dc.subject Significant points es_ES
dc.subject Bifurcations es_ES
dc.subject Crossings es_ES
dc.subject Bifurcation angles. es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Retinal network characterization through fundus image processing: Significant point identification on vessel centerline es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.image.2017.03.013 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2013-46751-R/ES/ANALISIS DE IMAGEN DE FONDO DE OJO PARA CRIBADO AUTOMATICO DE ENFERMEDADES OFTALMOLOGICAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Morales, S.; Naranjo Ornedo, V.; Angulo, J.; Legaz-Aparicio, A.; Verdu-Monedero, R. (2017). Retinal network characterization through fundus image processing: Significant point identification on vessel centerline. Signal Processing: Image Communication. 59:50-64. https://doi.org/10.1016/j.image.2017.03.013 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.image.2017.03.013 es_ES
dc.description.upvformatpinicio 50 es_ES
dc.description.upvformatpfin 64 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 59 es_ES
dc.relation.pasarela S\345788 es_ES
dc.contributor.funder Ministerio de Economía y Empresa es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem