- -

Probabilistic multi-word spotting in handwritten text images

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Probabilistic multi-word spotting in handwritten text images

Show full item record

Toselli, AH.; Vidal, E.; Puigcerver, J.; Noya-García, E. (2018). Probabilistic multi-word spotting in handwritten text images. Pattern Analysis and Applications. 22(1):23-32. https://doi.org/10.1007/s10044-018-0742-z

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/134140

Files in this item

Item Metadata

Title: Probabilistic multi-word spotting in handwritten text images
Author: Toselli, Alejandro Héctor Vidal, Enrique Puigcerver, Joan Noya-García, Ernesto
UPV Unit: Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat
Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Issued date:
Abstract:
[EN] Keyword spotting techniques are becoming cost-effective solutions for information retrieval in handwritten documents. We explore the extension of the single-word, line-level probabilistic indexing approach described ...[+]
Subjects: Handwritten text processing , Keyword spotting , Multi-word Boolean queries , Image processing , Pattern recognition
Copyrigths: Reserva de todos los derechos
Source:
Pattern Analysis and Applications. (issn: 1433-7541 )
DOI: 10.1007/s10044-018-0742-z
Publisher:
Springer-Verlag
Publisher version: https://doi.org/10.1007/s10044-018-0742-z
Thanks:
This work was partially supported by the Generalitat Valenciana under the Prometeo/2009/014 Project Grant ALMAMATER, Spanish MEC under Grant FPU13/06281, and through the EU projects: HIMANIS (JPICH programme, Spanish grant ...[+]
Type: Artículo

References

Andreu Sanchez J, Romero V, Toselli A, Vidal E (2014) ICFHR2014 competition on handwritten text recognition on transcriptorium datasets (HTRtS). In: 14th International conference on frontiers in handwriting recognition (ICFHR), 2014, pp 785–790

Bazzi I, Schwartz R, Makhoul J (1999) An omnifont open-vocabulary OCR system for English and Arabic. IEEE Trans Pattern Anal Mach Intell 21(6):495–504

Bluche T, Hamel S, Kermorvant C, Puigcerver J, Stutzmann D, Toselli AH, Vidal E (2017) Preparatory KWS experiments for large-scale indexing of a vast medieval manuscript collection in the hIMANIS Project. In: 14th International conference on document analysis and recognition (ICDAR). (Accepted) [+]
Andreu Sanchez J, Romero V, Toselli A, Vidal E (2014) ICFHR2014 competition on handwritten text recognition on transcriptorium datasets (HTRtS). In: 14th International conference on frontiers in handwriting recognition (ICFHR), 2014, pp 785–790

Bazzi I, Schwartz R, Makhoul J (1999) An omnifont open-vocabulary OCR system for English and Arabic. IEEE Trans Pattern Anal Mach Intell 21(6):495–504

Bluche T, Hamel S, Kermorvant C, Puigcerver J, Stutzmann D, Toselli AH, Vidal E (2017) Preparatory KWS experiments for large-scale indexing of a vast medieval manuscript collection in the hIMANIS Project. In: 14th International conference on document analysis and recognition (ICDAR). (Accepted)

Bluche T, Hamel S, Kermorvant C, Puigcerver J, Stutzmann D, Toselli AH, Vidal E (2017) Preparatory kws experiments for large-scale indexing of a vast medieval manuscript collection in the himanis project. In: 2017 14th IAPR international conference on document analysis and recognition (ICDAR), vol. 01, pp 311–316. https://doi.org/10.1109/ICDAR.2017.59

Boole G (1854) An investigation of the laws of thought on which are founded the mathematical theories of logic and probabilities. Macmillan, New York

Causer T, Wallace V (2012) Building a volunteer community: results and findings from Transcribe Bentham. Digital Humanities Quarterly 6

España-Boquera S, Castro-Bleda MJ, Gorbe-Moya J, Zamora-Martinez F (2011) Improving offline handwritten text recognition with hybrid hmm/ann models. IEEE Trans Pattern Anal Mach Intell 33(4):767–779. https://doi.org/10.1109/TPAMI.2010.141

Fischer A, Wuthrich M, Liwicki M, Frinken V, Bunke H, Viehhauser G, Stolz M (2009) Automatic transcription of handwritten medieval documents. In: 15th International conference on virtual systems and multimedia, 2009. VSMM ’09, pp 137–142. https://doi.org/10.1109/VSMM.2009.26

Fréchet M (1935) Généralisations du théorème des probabilités totales. Seminarjum Matematyczne

Fréchet M (1951) Sur les tableaux de corrélation dont les marges sont données. Ann Univ Lyon 3 $$^{\wedge }$$ ∧ e ser Sci Sect A 14:53–77

Graves A, Liwicki M, Fernández S, Bertolami R, Bunke H, Schmidhuber J (2009) A novel connectionist system for unconstrained handwriting recognition. IEEE Trans Pattern Anal Mach Intell 31(5):855–868

Jelinek F (1998) Statistical methods for speech recognition. MIT Press, Cambridge

Kneser R, Ney H (1995) Improved backing-off for N-gram language modeling. In: International conference on acoustics, speech and signal processing (ICASSP ’95), IEEE Computer Society, Los Alamitos, vol. 1, pp. 181–184, https://doi.org/10.1109/ICASSP.1995.479394

Kozielski M, Forster J, Ney H (2012) Moment-based image normalization for handwritten text recognition. In: Proceedings of the 2012 international conference on frontiers in handwriting recognition, ICFHR ’12, pp 256–261. IEEE Computer Society, Washington. https://doi.org/10.1109/ICFHR.2012.236

Lavrenko V, Rath TM, Manmatha R (2004) Holistic word recognition for handwritten historical documents. In: First Proceedings of international workshop on document image analysis for libraries, 2004, pp 278–287. https://doi.org/10.1109/DIAL.2004.1263256

Manning CD, Raghavan P, Schutze H (2008) Introduction to information retrieval. Cambridge University Press, New York

Marti UV, Bunke H (2002) The iam-database: an english sentence database for offline handwriting recognition. Int J Doc Anal Recogn 5:39–46. https://doi.org/10.1007/s100320200071

Noya-García E, Toselli AH, Vidal E (2017) Simple and effective multi-word query spotting in handwritten text images, pp 76–84. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-58838-4_9

Pratikakis I, Zagoris K, Gatos B, Louloudis G, Stamatopoulos N (2014) ICFHR 2014 competition on handwritten keyword spotting (h-kws 2014). In: 14th International conference on frontiers in handwriting recognition (ICFHR), 2014, pp 814–819

Puigcerver J, Toselli AH, Vidal E (2015) Icdar2015 competition on keyword spotting for handwritten documents. In: 13th international conference on document analysis and recognition (ICDAR), 2015, pp 1176–1180

Riba P, Almazn J, Forns A, Fernndez-Mota D, Valveny E, Llads J (2014) e-crowds: a mobile platform for browsing and searching in historical demography-related manuscripts. In: 14th International conference on frontiers in handwriting recognition (ICFHR), 2014, pp 228–233. https://doi.org/10.1109/ICFHR.2014.46

Robertson S (2008) A new interpretation of average precision. In: Proceedings of the international ACM SIGIR conference on research and development in information retrieval (SIGIR ’08), pp 689–690. ACM, New York. https://doi.org/10.1145/1390334.1390453

Romero V, Toselli AH, Vidal E (2012) Multimodal interactive handwritten text transcription. Series in machine perception and artificial intelligence (MPAI). World Scientific Publishing, Singapore

Sánchez JA, Romero V, Toselli AH, Vidal E (2016) ICFHR2016 competition on handwritten text recognition on the READ dataset. In: 15th International conference on frontiers in handwriting recognition (ICFHR’16), pp 630–635. https://doi.org/10.1109/ICFHR.2016.0120

Toselli A, Vidal E (2015) Handwritten text recognition results on the Bentham collection with improved classical N-Gram-HMM methods. In: 3rd International workshop on historical document imaging and processing (HIP15), pp 15–22

Toselli AH, Juan A, Keysers D, González J, Salvador I, Ney H, Vidal E, Casacuberta F (2004) Integrated Handwriting Recognition and Interpretation using Finite-State Models. Int J Pattern Recogn Artif Intell 18(4):519–539

Toselli AH, Vidal E, Romero V, Frinken V (2016) HMM word graph based keyword spotting in handwritten document images. Inf Sci 370(C):497–518. https://doi.org/10.1016/j.ins.2016.07.063

Vidal E, Toselli AH, Puigcerver J (2015) High performance query-by-example keyword spotting using query-by-string techniques. In: Proceedings of 13th ICDAR, pp 741–745

Vidal E, Toselli AH, Puigcerver J (2017) Lexicon-based probabilistic keyword spotting in handwritten text images (to be published)

Vinciarelli A, Bengio S, Bunke H (2004) Off-line recognition of unconstrained handwritten texts using HMMs and statistical language models. IEEE Trans Pattern Anal Mach Intell 26(6):709–720

Young S, Evermann G, Gales M, Hain T, Kershaw D (2009) The HTK book: hidden markov models toolkit V3.4. Microsoft Corporation and Cambridge Research Laboratory Ltd, Cambridge

Young S, Odell J, Ollason D, Valtchev V, Woodland P (1997) The HTK book: hidden markov models toolkit V2.1. Cambridge Research Laboratory Ltd, Cambridge

Zhu M (2004) Recall, precision and average precision. Working paper 2004-09 Department of Statistics and Actuarial Science–University of Waterloo

[-]

This item appears in the following Collection(s)

Show full item record