Mostrar el registro sencillo del ítem
dc.contributor.author | Rius-Sorolla, Gregorio | es_ES |
dc.contributor.author | Maheut, Julien | es_ES |
dc.contributor.author | Coronado-Hernandez, Jairo | es_ES |
dc.contributor.author | García Sabater, José Pedro | es_ES |
dc.date.accessioned | 2020-01-22T21:02:05Z | |
dc.date.available | 2020-01-22T21:02:05Z | |
dc.date.issued | 2020 | es_ES |
dc.identifier.issn | 1435-246X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/135396 | |
dc.description.abstract | [EN] The supply chain management requires increasingly proposals for the production programming planning that brings together its special singularities. Solving coexisting products and alternative processes or by-products must be allowed by the mathematical programming models. The generic materials and operations planning (GMOP) formulation allows operating with different materials and process lists. The paper presents a procedure to solve the versatile GMOP model by the Lagrange Relaxation. The subgradient update method of the lagrangian multiplier is compared with a linear update method. Obtaining lower bound faster compared to the linear method is allowed by the subgradient method, but the linear method provides better solutions after certain iterations. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Central European Journal of Operations Research | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | GMOP | es_ES |
dc.subject | Lagrangian Relaxation | es_ES |
dc.subject | Subgradient | es_ES |
dc.subject.classification | ORGANIZACION DE EMPRESAS | es_ES |
dc.title | Lagrangian relaxation of the Generic Materials and Operations Planning model | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s10100-018-0593-0 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Organización de Empresas - Departament d'Organització d'Empreses | es_ES |
dc.description.bibliographicCitation | Rius-Sorolla, G.; Maheut, J.; Coronado-Hernandez, J.; García Sabater, JP. (2020). Lagrangian relaxation of the Generic Materials and Operations Planning model. Central European Journal of Operations Research. 28:105-123. https://doi.org/10.1007/s10100-018-0593-0 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s10100-018-0593-0 | es_ES |
dc.description.upvformatpinicio | 105 | es_ES |
dc.description.upvformatpfin | 123 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 28 | es_ES |
dc.relation.pasarela | S\371199 | es_ES |
dc.description.references | Agmon S (1954) The relaxation method for linear inequalities. Can J Math 6(3):382–392 | es_ES |
dc.description.references | Araúzo JA, Del-Olmo-Martínez R, Laviós JJ, De-Benito-Martín JJ (2015) Programación y Control de Sistemas de Fabricación Flexibles: un Enfoque Holónico. Rev Iberoam Autom Inf Ind RIAI 12(1):58–68. https://doi.org/10.1016/j.riai.2014.11.005 | es_ES |
dc.description.references | Attanasio A, Ghiani G, Grandinetti L, Guerriero F (2006) Auction algorithms for decentralized parallel machine scheduling. Parallel Comput 32(9):701–709. https://doi.org/10.1016/j.parco.2006.03.002 | es_ES |
dc.description.references | Barahona F, Anbil R (2000) The volume algorithm: producing primal solutions with a subgradient method. Math Program 87(3):385–399. https://doi.org/10.1007/s101070050002 | es_ES |
dc.description.references | Barker CB (1945) The Lagrange multiplier rule for two dependent and two independent variables. Am J Math 67(2):256. https://doi.org/10.2307/2371728 | es_ES |
dc.description.references | Beltran C, Heredia FJ (2002) Unit commitment by augmented lagrangian relaxation: testing two decomposition approaches. J Optim Theory Appl 112(2):295–314. https://doi.org/10.1023/A:1013601906224 | es_ES |
dc.description.references | Benders JF (1962) Partitioning procedures for solving mixed-variables programming problems. Numer Math 4(1):238–252. https://doi.org/10.1007/BF01386316 | es_ES |
dc.description.references | Bertsekas DP (1975) Nondifferentiable optimization via approximation. In: Mathematical programming study, vol 3, pp 1–25. https://doi.org/10.1007/BFb0120696 | es_ES |
dc.description.references | Bertsekas DP (1979) Convexification procedures and decomposition methods for nonconvex optimization problems. J Optim Theory Appl 29(2):169–197. https://doi.org/10.1007/BF00937167 | es_ES |
dc.description.references | Bilde O, Krarup J (1967) Bestemmelse af optimal beliggenhed af produktionssteder. Research reportIMSOR, The Technical University of Denmark, pp 79–88 | es_ES |
dc.description.references | Bitran GR, Yanasse HH (1982) Computational complexity of the capacitated lot size problem. Manag Sci 28(10):1174–1186. https://doi.org/10.1287/mnsc.28.10.1174 | es_ES |
dc.description.references | Blouin VY, Lassiter JB, Wiecek MM, Fadel GM (2005) Augmented Lagrangian coordination for decomposed design problems. In: 6th World Congress on structural and multidisciplinary optimization, (June), 1–10 | es_ES |
dc.description.references | Boyd S, Mutapcic A, Xiao L, Mutapcic A (2008) Subgradient methods. Lecture notes of EE392o, Stanford …, 1, 1–21 | es_ES |
dc.description.references | Camerini PM, Fratta L, Maffioli F (1975) On improving relaxation methods by modified gradient techniques. Nondiffer Optim 3(August 1974):26–34. https://doi.org/10.1007/BFb0120697 | es_ES |
dc.description.references | Chang TS (2008) Comments on «surrogate gradient algorithm for Lagrangian relaxation». J Optim Theory Appl 137(3):691–697. https://doi.org/10.1007/s10957-007-9349-z | es_ES |
dc.description.references | Conejo AJ, Castillo E, Minguez R, Garcia-Bertrand R (2006) Decomposition techniques in mathematical programming. Springer, Berlin. https://doi.org/10.1007/3-540-27686-6 | es_ES |
dc.description.references | Coronado-Hernández JR (2016) Análisis del efecto de algunos factores de complejidad e incertidumbre en el rendimiento de las Cadenas de Suministro. Propuesta de una herramienta de valoración basada en simulación. Universitat Politècnica de València, Valencia (Spain). https://doi.org/10.4995/Thesis/10251/61467 | es_ES |
dc.description.references | Coronado-Hernández JR, Garcia-Sabater JP, Maheut J, Garcia-Sabater J (2010) Modelo de optimización estocástica para la planificación de cadenas de suministro para productos con ciclo de vida cortos. WPOM Work Pap Oper Manag 1(2):1366–1375. https://doi.org/10.4995/wpom.v1i2.785 | es_ES |
dc.description.references | Coronado-Hernández JR, Simancas-Mateus D, Avila-Martinez K, Garcia-Sabater JP (2017) Heuristic for material and operations planning in supply chains with alternative product structurture. J Eng Appl Sci 12(3):628–635. https://doi.org/10.3923/jeasci.2017.628.635 | es_ES |
dc.description.references | Dantzig GB, Wolfe P (1960) Decomposition principle for linear programs. Oper Res 8(1):101–111. https://doi.org/10.1287/opre.8.1.101 | es_ES |
dc.description.references | Diabat A, Battaïa O, Nazzal D (2015) An improved Lagrangian relaxation-based heuristic for a joint location-inventory problem. Comput Oper Res 61:170–178. https://doi.org/10.1016/j.cor.2014.03.006 | es_ES |
dc.description.references | Duchi J, Hazan E, Singer Y (2011) Adaptive subgradient methods for online learning and stochastic optimization. J Mach Learn Res 12:2121–2159. https://doi.org/10.1109/CDC.2012.6426698 | es_ES |
dc.description.references | Fisher ML (1985) An application oriented guide to Lagrangean relaxation. Interfaces. https://doi.org/10.1287/inte.15.2.10 | es_ES |
dc.description.references | Fisher ML (2004) The Lagrangian relaxation method for solving integer programming problems. Manag Sci 50(12 Supplement):1861–1871. https://doi.org/10.1287/mnsc.1040.0263 | es_ES |
dc.description.references | Fisher ML, Lageweg BJ, Lenstra JK, Kan AHGR (1983) Surrogate duality relaxation for job shop scheduling. Discrete Appl Math 5(1):65–75. https://doi.org/10.1016/0166-218X(83)90016-1 | es_ES |
dc.description.references | Fu YM, Diabat A (2015) A lagrangian relaxation approach for solving the integrated quay crane assignment and scheduling problem. Appl Math Model 39(3–4):1194–1201. https://doi.org/10.1016/j.apm.2014.07.006 | es_ES |
dc.description.references | Galvão RD, Marianov V (2011) Lagrangean relaxation-based techniques for solving facility location problems. In: Foundations of location analysis, pp 391–420. https://doi.org/10.1007/978-1-4419-7572-0_17 | es_ES |
dc.description.references | Garcia-Sabater JP, Maheut J, Marin-Garcia JA (2013) A new formulation technique to model materials and operations planning: the generic materials and operations planning (GMOP) problem. Eur J Ind Eng 7(2):119. https://doi.org/10.1504/EJIE.2013.052572 | es_ES |
dc.description.references | Gaudioso M, Giallombardo G, Miglionico G (2009) On solving the Lagrangian dual of integer programs via an incremental approach. Comput Optim Appl 44(1):117–138. https://doi.org/10.1007/s10589-007-9149-2 | es_ES |
dc.description.references | Geoffrion AM (1974) Lagrangean relaxation for integer programming. Approaches Integer Program 2(December):82–114. https://doi.org/10.1007/BFb0120690 | es_ES |
dc.description.references | Giselsson P, Doan MD, Keviczky T, Schutter B De, Rantzer A (2013) Accelerated gradient methods and dual decomposition in distributed model predictive control. Automatica 49(3):829–833. https://doi.org/10.1016/j.automatica.2013.01.009 | es_ES |
dc.description.references | Goffin J (1977) On convergence rates of subgradient optimization methods. Math Program 13(1):329–347. https://doi.org/10.1007/BF01584346 | es_ES |
dc.description.references | Gould S (1945) Lagrange multipliers and functional derterminants. Bull Am Math Soc 52(9):817 | es_ES |
dc.description.references | Guignard M (2003) Lagrangean relaxation. Soc Estad Investig Oper Top 11(2):151–200. https://doi.org/10.1007/BF02579036 | es_ES |
dc.description.references | Guignard M, Kim S (1987) Lagrangean decomposition: a model yielding stronger Lagrangean bounds. Math Program 39(2):215–228. https://doi.org/10.1007/BF02592954 | es_ES |
dc.description.references | Gunnerud V, Foss B (2010) Oil production optimization—a piecewise linear model, solved with two decomposition strategies. Comput Chem Eng 34(11):1803–1812. https://doi.org/10.1016/j.compchemeng.2009.10.019 | es_ES |
dc.description.references | Gupta A, Maranas CD (1999) A hierarchical Lagrangean relaxation procedure for solving midterm planning problems. Ind Eng Chem Res 38(5):1937–1947. https://doi.org/10.1021/ie980782t | es_ES |
dc.description.references | Harb H, Paprott J-N, Matthes P, Schütz T, Streblow R, Mueller D (2015) Decentralized scheduling strategy of heating systems for balancing the residual load. Build Environ 86:132–140. https://doi.org/10.1016/j.buildenv.2014.12.015 | es_ES |
dc.description.references | Held M, Karp RM (1970) The traveling-salesman problem and minimum spanning trees. Oper Res 18(6):1138–1162. https://doi.org/10.1287/opre.18.6.1138 | es_ES |
dc.description.references | Held M, Karp RM (1971) The traveling-salesman problem and minimum spanning trees: part II. Math Program 1(1):6–25. https://doi.org/10.1007/BF01584070 | es_ES |
dc.description.references | Held M, Wolfe P, Crowder HP (1974) Validation of subgradient optimization. Math Program 6(1):62–88. https://doi.org/10.1007/BF01580223 | es_ES |
dc.description.references | Jeet V, Kutanoglu E (2007) Lagrangian relaxation guided problem space search heuristics for generalized assignment problems. Eur J Oper Res 182(3):1039–1056. https://doi.org/10.1016/j.ejor.2006.09.060 | es_ES |
dc.description.references | Jeong I-J, Yim S-B (2009) A job shop distributed scheduling based on Lagrangian relaxation to minimise total completion time. Int J Prod Res 47(24):6783–6805. https://doi.org/10.1080/00207540701824217 | es_ES |
dc.description.references | Karuppiah R, Grossmann IE (2008) A Lagrangean based branch-and-cut algorithm for global optimization of nonconvex mixed-integer nonlinear programs with decomposable structures. J Global Optim 41(2):163–186. https://doi.org/10.1007/s10898-007-9203-8 | es_ES |
dc.description.references | Kelly JD, Zyngier D (2008) Hierarchical decomposition heuristic for scheduling: coordinated reasoning for decentralized and distributed decision-making problems. Comput Chem Eng 32(11):2684–2705. https://doi.org/10.1016/j.compchemeng.2007.08.007 | es_ES |
dc.description.references | Kong J, Rönnqvist M (2014) Coordination between strategic forest management and tactical logistic and production planning in the forestry supply chain. Int Trans Oper Res 21(5):703–735. https://doi.org/10.1111/itor.12089 | es_ES |
dc.description.references | Kuno T, Utsunomiya T (2000) A Lagrangian based branch-and-bound algorithm for production-transportation problems. J Global Optim 18(1):59–73. https://doi.org/10.1023/A:1008373329033 | es_ES |
dc.description.references | Lau HC, Zhao ZJ, Ge SS, Lee TH (2011) Allocating resources in multiagent flowshops with adaptive auctions. IEEE Trans Autom Sci Eng 8(4):732–743. https://doi.org/10.1109/TASE.2011.2160536 | es_ES |
dc.description.references | Lemaréchal C (2001) Lagrangian relaxation. Comput Comb Optim 2241:112–156. https://doi.org/10.1007/3-540-45586-8_4 | es_ES |
dc.description.references | Li Z, Ierapetritou MG (2012) Capacity expansion planning through augmented Lagrangian optimization and scenario decomposition. AIChE J 58(3):871–883. https://doi.org/10.1002/aic.12614 | es_ES |
dc.description.references | Lidestam H, Rönnqvist M (2011) Use of Lagrangian decomposition in supply chain planning. Math Comput Model 54(9–10):2428–2442. https://doi.org/10.1016/j.mcm.2011.05.054 | es_ES |
dc.description.references | Lorie JH, Savage LJ (1955) Three problems in rationing capital. J Bus 28(4):229–239. https://doi.org/10.1086/294081 | es_ES |
dc.description.references | Lu SYP, Lau HYK, Yiu CKF (2012) A hybrid solution to collaborative decision-making in a decentralized supply-chain. J Eng Tech Manag 29(1):95–111. https://doi.org/10.1016/j.jengtecman.2011.09.008 | es_ES |
dc.description.references | Maheut J (2013) Modelos y Algoritmos Basados en el Concepto Stroke para la Planificación y Programación de Operaciones con Alternativas en Redes de Suministro. Universitat Politècnica de València, Valencia (Spain). https://doi.org/10.4995/Thesis/10251/29290 | es_ES |
dc.description.references | Maheut J, Garcia-Sabater JP, Mula J (2012) The generic materials and operations planning (GMOP) problem solved iteratively: a case study in multi-site context. IFIP Adv Inf Commun Technol 384 AICT:66–73. https://doi.org/10.1007/978-3-642-33980-6_8 | es_ES |
dc.description.references | Mao K, Pan QK, Pang X, Chai T (2014) A novel Lagrangian relaxation approach for a hybrid flowshop scheduling problem in the steelmaking-continuous casting process. Eur J Oper Res 236(1):51–60. https://doi.org/10.1016/j.ejor.2013.11.010 | es_ES |
dc.description.references | Mcdonald CM, Karimi IA (1997) Planning and scheduling of parallel semicontinuous processes. 1. Production planning. Ind Eng Chem Res 36(7):2691–2700. https://doi.org/10.1021/ie960901+ | es_ES |
dc.description.references | Narciso MG, Lorena LAN (1999) Lagrangean/surrogate relaxation for generalized assignment problems. Eur J Oper Res 114(1):165–177. https://doi.org/10.1016/S0377-2217(98)00038-1 | es_ES |
dc.description.references | Nedic A, Bertsekas DP (2001) Convergence rate of incremental subgradient algorithms. In: Uryasev S, Pardalos PM (eds) Stochastic optimization: algorithms and applications, pp 223–264 | es_ES |
dc.description.references | Nishi T, Hiranaka Y, Inuiguchi M (2010) Lagrangian relaxation with cut generation for hybrid flowshop scheduling problems to minimize the total weighted tardiness. Comput Oper Res 37(1):189–198. https://doi.org/10.1016/j.cor.2009.04.008 | es_ES |
dc.description.references | Polyak BT (1969) Minimization of unsmooth functionals. USSR Comput Math Math Phys 9(3):14–29. https://doi.org/10.1016/0041-5553(69)90061-5 | es_ES |
dc.description.references | Pukkala T, Heinonen T, Kurttila M (2009) An application of a reduced cost approach to spatial forest planning. For Sci 55(1):13–22 | es_ES |
dc.description.references | Qu T, Nie DX, Chen X, Chen XD, Dai QY, Huang GQ (2015) Optimal configuration of cluster supply chains with augmented Lagrange coordination. Comput Ind Eng 84(SI):43–55. https://doi.org/10.1016/j.cie.2014.12.026 | es_ES |
dc.description.references | Quddus MA, Ibne Hossain NU, Mohammad M, Jaradat RM, Roni MS (2017) Sustainable network design for multi-purpose pellet processing depots under biomass supply uncertainty. Comput Ind Eng 110:462–483. https://doi.org/10.1016/j.cie.2017.06.001 | es_ES |
dc.description.references | Sáez J (2000) Solving linear programming relaxations associated with Lagrangean relaxations by Fenchel cutting planes. Eur J Oper Res 121(3):609–626. https://doi.org/10.1016/S0377-2217(99)00056-9 | es_ES |
dc.description.references | Sherali HD, Choi G (1996) Recovery of primal solutions when using subgradient optimization methods to solve Lagrangian duals of linear programs. Oper Res Lett 19(3):105–113. https://doi.org/10.1016/0167-6377(96)00019-3 | es_ES |
dc.description.references | Sokoler LE, Standardi L, Edlund K, Poulsen NK, Madsen H, Jørgensen JB (2014) A Dantzig–Wolfe decomposition algorithm for linear economic model predictive control of dynamically decoupled subsystems. J Process Control 24(8):1225–1236. https://doi.org/10.1016/j.jprocont.2014.05.013 | es_ES |
dc.description.references | Stadtler H, Kilger C (2008) Supply chain management and advanced planning. In: Stadtler H, Kilger C (eds) Supply chain management and advanced planning. Concepts, models, software, and case studies. Springer, Berlin | es_ES |
dc.description.references | Tosserams S, Etman LFP, Papalambros PY, Rooda JE (2006) An augmented Lagrangian relaxation for analytical target cascading using the alternating direction method of multipliers. Struct Multidiscip Optim 31(3):176–189. https://doi.org/10.1007/s00158-005-0579-0 | es_ES |
dc.description.references | Vidal-Carreras PI, Garcia-Sabater JP, Coronado-Hernandez JR (2012) Economic lot scheduling with deliberated and controlled coproduction. Eur J Oper Res 219(2):396–404. https://doi.org/10.1016/j.ejor.2011.12.020 | es_ES |
dc.description.references | Walther G, Schmid E, Spengler TS (2008) Negotiation-based coordination in product recovery networks. Int J Prod Econ 111(2):334–350. https://doi.org/10.1016/j.ijpe.2006.12.069 | es_ES |
dc.description.references | Wolfe P (1974) Note on a method of conjugate subgradients for minimizing nondifferentiable functions. Math Program 7(1):380–383. https://doi.org/10.1007/BF01585533 | es_ES |
dc.description.references | Zhang ZH, Jiang H, Pan X (2012) A Lagrangian relaxation based approach for the capacitated lot sizing problem in closed-loop supply chain. Int J Prod Econ 140(1):249–255. https://doi.org/10.1016/j.ijpe.2012.01.018 | es_ES |
dc.description.references | Zhao X, Luh PB, Wang J (1999) Surrogate gradient algorithm for Lagrangian relaxation method. J Optim Theory Appl 100(3):699–712. https://doi.org/10.1023/A:1022646725208 | es_ES |