Mostrar el registro sencillo del ítem
dc.contributor.author | Mas-Cabo, Javier | es_ES |
dc.contributor.author | Prats-Boluda, Gema | es_ES |
dc.contributor.author | Garcia-Casado, Javier | es_ES |
dc.contributor.author | Alberola Rubio, José | es_ES |
dc.contributor.author | Perales Marín, Alfredo José | es_ES |
dc.contributor.author | Ye Lin, Yiyao | es_ES |
dc.date.accessioned | 2020-01-22T21:02:19Z | |
dc.date.available | 2020-01-22T21:02:19Z | |
dc.date.issued | 2019 | es_ES |
dc.identifier.issn | 1687-725X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/135405 | |
dc.description.abstract | [EN] Preterm labor is one of the major causes of neonatal deaths and also the cause of significant health and development impairments in those who survive. However, there are still no reliable and accurate tools for preterm labor prediction in clinical settings. Electrohysterography (EHG) has been proven to provide relevant information on the labor time horizon. Many studies focused on predicting preterm labor by using temporal, spectral, and nonlinear parameters extracted from single EHG recordings. However, multichannel analysis, which includes information from the whole uterus and about coupling between the recording areas, may provide better results. The cross validation method is often used to design classifiers and evaluate their performance. However, when the validation dataset is used to tune the classifier hyperparameters, the performance metrics of this dataset may not properly assess its generalization capacity. In this work, we developed and compared different classifiers, based on artificial neural networks, for predicting preterm labor using EHG features from single and multichannel recordings. A set of temporal, spectral, nonlinear, and synchronization parameters computed from EHG recordings was used as the input features. All the classifiers were evaluated on independent test datasets, which were never ¿seen¿ by the models, to determine their generalization capacity. Classifiers¿ performance was also evaluated when obstetrical data were included. The experimental results show that the classifier performance metrics were significantly lower in the test dataset (AUC range 76-91%) than in the train and validation sets (AUC range 90-99%). The multichannel classifiers outperformed the single-channel classifiers, especially when information was combined into mean efficiency indexes and included coupling information between channels. Including obstetrical data slightly improved the classifier metrics and reached an AUC of for the test dataset. These results show promise for the transfer of the EHG technique to preterm labor prediction in clinical practice. | es_ES |
dc.description.sponsorship | This work was supported by the Spanish Ministry of Economy and Competitiveness, the European Regional Development Fund (DPI2015-68397-R, MINECO/FEDER, and RTI2018-094449-A-I00-AR); Generalitat Valenciana (AICO/2019/220); and the VLC/Campus (UPV-FE-2018-B03). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Hindawi Limited | es_ES |
dc.relation.ispartof | Journal of Sensors | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Design and Assessment of a Robust and Generalizable ANN-Based Classifier for the Prediction of Premature Birth by means of Multichannel Electrohysterographic Records | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1155/2019/5373810 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//UPV-FE-2018-B03/ES/AMENAZA DE PARTO PREMATURO. ¿DESENLACE? SISTEMA PREDICTOR CON EHG/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//AICO%2F2019%2F220/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//DPI2015-68397-R/ES/ELECTROHISTEROGRAFIA, CONSTRUYENDO PUENTES PARA SU USO CLINICO EN OBSTETRICIA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094449-A-I00/ES/ELECTROHISTEROGRAFIA PARA LA MEJORA EN LA TOMA DE DECISIONES EN SITUACIONES DE RIESGO EN OBSTETRICIA: PARTO PREMATURO E INDUCCION DEL PARTO/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Interuniversitario de Investigación en Bioingeniería y Tecnología Orientada al Ser Humano - Institut Interuniversitari d'Investigació en Bioenginyeria i Tecnologia Orientada a l'Ésser Humà | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Servicio de Alumnado - Servei d'Alumnat | es_ES |
dc.description.bibliographicCitation | Mas-Cabo, J.; Prats-Boluda, G.; Garcia-Casado, J.; Alberola Rubio, J.; Perales Marín, AJ.; Ye Lin, Y. (2019). Design and Assessment of a Robust and Generalizable ANN-Based Classifier for the Prediction of Premature Birth by means of Multichannel Electrohysterographic Records. Journal of Sensors. 2019:1-13. https://doi.org/10.1155/2019/5373810 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1155/2019/5373810 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 13 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 2019 | es_ES |
dc.relation.pasarela | S\398428 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Instituto de Investigación Sanitaria La Fe | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Goldenberg, R. L., Culhane, J. F., Iams, J. D., & Romero, R. (2008). Epidemiology and causes of preterm birth. The Lancet, 371(9606), 75-84. doi:10.1016/s0140-6736(08)60074-4 | es_ES |
dc.description.references | Zeitlin, J., Szamotulska, K., Drewniak, N., Mohangoo, A., Chalmers, J., … Sakkeus, L. (2013). Preterm birth time trends in Europe: a study of 19 countries. BJOG: An International Journal of Obstetrics & Gynaecology, 120(11), 1356-1365. doi:10.1111/1471-0528.12281 | es_ES |
dc.description.references | Fitzpatrick, K., Tuffnell, D., Kurinczuk, J., & Knight, M. (2016). Pregnancy at very advanced maternal age: a UK population-based cohort study. BJOG: An International Journal of Obstetrics & Gynaecology, 124(7), 1097-1106. doi:10.1111/1471-0528.14269 | es_ES |
dc.description.references | Haas, D., Benjamin, T., Sawyer, R., & Quinney, S. (2014). Short-term tocolytics for preterm delivery – current perspectives. International Journal of Women’s Health, 343. doi:10.2147/ijwh.s44048 | es_ES |
dc.description.references | Garfield, R. E., Maner, W. L., Maul, H., & Saade, G. R. (2005). Use of uterine EMG and cervical LIF in monitoring pregnant patients. BJOG: An International Journal of Obstetrics & Gynaecology, 112, 103-108. doi:10.1111/j.1471-0528.2005.00596.x | es_ES |
dc.description.references | Devedeux, D., Marque, C., Mansour, S., Germain, G., & Duchêne, J. (1993). Uterine electromyography: A critical review. American Journal of Obstetrics and Gynecology, 169(6), 1636-1653. doi:10.1016/0002-9378(93)90456-s | es_ES |
dc.description.references | Chkeir, A., Fleury, M.-J., Karlsson, B., Hassan, M., & Marque, C. (2013). Patterns of electrical activity synchronization in the pregnant rat uterus. BioMedicine, 3(3), 140-144. doi:10.1016/j.biomed.2013.04.007 | es_ES |
dc.description.references | Fuchs, A.-R., Fuchs, F., Husslein, P., & Soloff, M. S. (1984). Oxytocin receptors in the human uterus during pregnancy and parturition. American Journal of Obstetrics and Gynecology, 150(6), 734-741. doi:10.1016/0002-9378(84)90677-x | es_ES |
dc.description.references | Tezuka, N., Ali, M., Chwalisz, K., & Garfield, R. E. (1995). Changes in transcripts encoding calcium channel subunits of rat myometrium during pregnancy. American Journal of Physiology-Cell Physiology, 269(4), C1008-C1017. doi:10.1152/ajpcell.1995.269.4.c1008 | es_ES |
dc.description.references | Honest, H., Bachmann, L., Sundaram, R., Gupta, J., Kleijnen, J., & Khan, K. (2004). The accuracy of risk scores in predicting preterm birth—a systematic review. Journal of Obstetrics and Gynaecology, 24(4), 343-359. doi:10.1080/01443610410001685439 | es_ES |
dc.description.references | Garfield, R. E., & Hayashi, R. H. (1981). Appearance of gap junctions in the myometrium of women during labor. American Journal of Obstetrics and Gynecology, 140(3), 254-260. doi:10.1016/0002-9378(81)90270-2 | es_ES |
dc.description.references | Maner, W. (2003). Predicting term and preterm delivery with transabdominal uterine electromyography. Obstetrics & Gynecology, 101(6), 1254-1260. doi:10.1016/s0029-7844(03)00341-7 | es_ES |
dc.description.references | Fele-Žorž, G., Kavšek, G., Novak-Antolič, Ž., & Jager, F. (2008). A comparison of various linear and non-linear signal processing techniques to separate uterine EMG records of term and pre-term delivery groups. Medical & Biological Engineering & Computing, 46(9), 911-922. doi:10.1007/s11517-008-0350-y | es_ES |
dc.description.references | Diab, A., Hassan, M., Marque, C., & Karlsson, B. (2014). Performance analysis of four nonlinearity analysis methods using a model with variable complexity and application to uterine EMG signals. Medical Engineering & Physics, 36(6), 761-767. doi:10.1016/j.medengphy.2014.01.009 | es_ES |
dc.description.references | Lucovnik, M., Maner, W. L., Chambliss, L. R., Blumrick, R., Balducci, J., Novak-Antolic, Z., & Garfield, R. E. (2011). Noninvasive uterine electromyography for prediction of preterm delivery. American Journal of Obstetrics and Gynecology, 204(3), 228.e1-228.e10. doi:10.1016/j.ajog.2010.09.024 | es_ES |
dc.description.references | Acharya, U. R., Sudarshan, V. K., Rong, S. Q., Tan, Z., Lim, C. M., Koh, J. E., … Bhandary, S. V. (2017). Automated detection of premature delivery using empirical mode and wavelet packet decomposition techniques with uterine electromyogram signals. Computers in Biology and Medicine, 85, 33-42. doi:10.1016/j.compbiomed.2017.04.013 | es_ES |
dc.description.references | Fergus, P., Idowu, I., Hussain, A., & Dobbins, C. (2016). Advanced artificial neural network classification for detecting preterm births using EHG records. Neurocomputing, 188, 42-49. doi:10.1016/j.neucom.2015.01.107 | es_ES |
dc.description.references | Ren, P., Yao, S., Li, J., Valdes-Sosa, P. A., & Kendrick, K. M. (2015). Improved Prediction of Preterm Delivery Using Empirical Mode Decomposition Analysis of Uterine Electromyography Signals. PLOS ONE, 10(7), e0132116. doi:10.1371/journal.pone.0132116 | es_ES |
dc.description.references | Bradley, A. P. (1997). The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition, 30(7), 1145-1159. doi:10.1016/s0031-3203(96)00142-2 | es_ES |
dc.description.references | Maner, W. L., & Garfield, R. E. (2007). Identification of Human Term and Preterm Labor using Artificial Neural Networks on Uterine Electromyography Data. Annals of Biomedical Engineering, 35(3), 465-473. doi:10.1007/s10439-006-9248-8 | es_ES |
dc.description.references | Smrdel, A., & Jager, F. (2015). Separating sets of term and pre-term uterine EMG records. Physiological Measurement, 36(2), 341-355. doi:10.1088/0967-3334/36/2/341 | es_ES |
dc.description.references | Aditya, S., & Tibarewala, D. N. (2012). Comparing ANN, LDA, QDA, KNN and SVM algorithms in classifying relaxed and stressful mental state from two-channel prefrontal EEG data. International Journal of Artificial Intelligence and Soft Computing, 3(2), 143. doi:10.1504/ijaisc.2012.049010 | es_ES |
dc.description.references | Li, Q., Rajagopalan, C., & Clifford, G. D. (2014). A machine learning approach to multi-level ECG signal quality classification. Computer Methods and Programs in Biomedicine, 117(3), 435-447. doi:10.1016/j.cmpb.2014.09.002 | es_ES |
dc.description.references | Li, Z., Zhang, Q., & Zhao, X. (2017). Performance analysis of K-nearest neighbor, support vector machine, and artificial neural network classifiers for driver drowsiness detection with different road geometries. International Journal of Distributed Sensor Networks, 13(9), 155014771773339. doi:10.1177/1550147717733391 | es_ES |
dc.description.references | Murthy, H. S. N., & Meenakshi, D. M. (2015). ANN, SVM and KNN Classifiers for Prognosis of Cardiac Ischemia- A Comparison. Bonfring International Journal of Research in Communication Engineering, 5(2), 07-11. doi:10.9756/bijrce.8030 | es_ES |
dc.description.references | Ren, J. (2012). ANN vs. SVM: Which one performs better in classification of MCCs in mammogram imaging. Knowledge-Based Systems, 26, 144-153. doi:10.1016/j.knosys.2011.07.016 | es_ES |
dc.description.references | Maul, H., Maner, W., Olson, G., Saade, G., & Garfield, R. (2004). Non-invasive transabdominal uterine electromyography correlates with the strength of intrauterine pressure and is predictive of labor and delivery. The Journal of Maternal-Fetal & Neonatal Medicine, 15(5), 297-301. doi:10.1080/14767050410001695301 | es_ES |
dc.description.references | Mas-Cabo, J., Prats-Boluda, G., Perales, A., Garcia-Casado, J., Alberola-Rubio, J., & Ye-Lin, Y. (2018). Uterine electromyography for discrimination of labor imminence in women with threatened preterm labor under tocolytic treatment. Medical & Biological Engineering & Computing, 57(2), 401-411. doi:10.1007/s11517-018-1888-y | es_ES |
dc.description.references | Garfield, R. E., & Maner, W. L. (2007). Physiology and electrical activity of uterine contractions. Seminars in Cell & Developmental Biology, 18(3), 289-295. doi:10.1016/j.semcdb.2007.05.004 | es_ES |
dc.description.references | Ahmed, M., Chanwimalueang, T., Thayyil, S., & Mandic, D. (2016). A Multivariate Multiscale Fuzzy Entropy Algorithm with Application to Uterine EMG Complexity Analysis. Entropy, 19(1), 2. doi:10.3390/e19010002 | es_ES |
dc.description.references | Brennan, M., Palaniswami, M., & Kamen, P. (2001). Do existing measures of Poincare plot geometry reflect nonlinear features of heart rate variability? IEEE Transactions on Biomedical Engineering, 48(11), 1342-1347. doi:10.1109/10.959330 | es_ES |
dc.description.references | Cui, D., Pu, W., Liu, J., Bian, Z., Li, Q., Wang, L., & Gu, G. (2016). A new EEG synchronization strength analysis method: S-estimator based normalized weighted-permutation mutual information. Neural Networks, 82, 30-38. doi:10.1016/j.neunet.2016.06.004 | es_ES |
dc.description.references | Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence Research, 16, 321-357. doi:10.1613/jair.953 | es_ES |
dc.description.references | Bottou, L. (2012). Stochastic Gradient Descent Tricks. Neural Networks: Tricks of the Trade, 421-436. doi:10.1007/978-3-642-35289-8_25 | es_ES |
dc.description.references | Lim, K., Butt, K., & Crane, J. M. (2018). No. 257-Ultrasonographic Cervical Length Assessment in Predicting Preterm Birth in Singleton Pregnancies. Journal of Obstetrics and Gynaecology Canada, 40(2), e151-e164. doi:10.1016/j.jogc.2017.11.016 | es_ES |