Bernal-Garcia, A.; Roman, JE.; Miró Herrero, R.; Verdú Martín, GJ. (2018). Calculation of multiple eigenvalues of the neutron diffusion equation discretized with a parallelized finite volume method. Progress in Nuclear Energy. 105:271-278. https://doi.org/10.1016/j.pnucene.2018.02.006
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/136098
Title:
|
Calculation of multiple eigenvalues of the neutron diffusion equation discretized with a parallelized finite volume method
|
Author:
|
Bernal-Garcia, Alvaro
Roman, Jose E.
Miró Herrero, Rafael
Verdú Martín, Gumersindo Jesús
|
UPV Unit:
|
Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear
Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
|
Issued date:
|
|
Abstract:
|
[EN] The spatial distribution of the neutron flux within the core of nuclear reactors is a key factor in nuclear safety. The easiest and fastest way to determine it is by solving the eigenvalue problem of the neutron ...[+]
[EN] The spatial distribution of the neutron flux within the core of nuclear reactors is a key factor in nuclear safety. The easiest and fastest way to determine it is by solving the eigenvalue problem of the neutron diffusion equation, which only contains spatial derivatives. The approximation of these derivatives is performed by discretizing the geometry and using numerical methods. In this work, the authors used a finite volume method based on a polynomial expansion of the neutron flux. Once these terms are discretized, a set of matrix equations is obtained, which constitutes the eigenvalue problem. A very effective class of methods for the solution of eigenvalue problems are those based on projection onto a low-dimensional subspace, such as Krylov subspaces. Thus, the SLEPc library was used for solving the eigenvalue problem by means of the Krylov-Schur method, which also uses projection methods of PETSc for solving linear systems. This work includes a complete sensitivity analysis of different issues: mesh, polynomial terms, linear systems solvers and parallelization.
[-]
|
Subjects:
|
Eigenvalue problem
,
Neutron diffusion equation
,
Finite volume method
,
Krylov subspaces
|
Copyrigths:
|
Reserva de todos los derechos
|
Source:
|
Progress in Nuclear Energy. (issn:
0149-1970
)
|
DOI:
|
10.1016/j.pnucene.2018.02.006
|
Publisher:
|
Elsevier
|
Publisher version:
|
https://doi.org/10.1016/j.pnucene.2018.02.006
|
Project ID:
|
GENERALITAT VALENCIANA/PROMETEOII/2014/008
MINISTERIO DE ECONOMIA Y EMPRESA/ENE2014-59442-P
MINISTERIO DE ECONOMIA Y EMPRESA/ENE2015-68353-P
AEI/TIN2016-75985-P
MINISTERIO DE EDUCACION /AP2013-01009
|
Thanks:
|
This work has been partially supported by the Spanish Ministerio de Eduacion Cultura y Deporte under the grant FPU13/01009, the Spanish Ministerio de Ciencia e Innovacion under the project ENE2014-59442-P, the Spanish ...[+]
This work has been partially supported by the Spanish Ministerio de Eduacion Cultura y Deporte under the grant FPU13/01009, the Spanish Ministerio de Ciencia e Innovacion under the project ENE2014-59442-P, the Spanish Ministerio de Economia y Competitividad and the European Fondo Europeo de Desarrollo Regional (FEDER) under the project ENE2015-68353-P (MINECO/FEDER), the Generalitat Valenciana under the project PROMETEOII/2014/008, and the Spanish Ministerio de Economia y Competitividad and the European Fondo Europeo de Desarrollo Regional (FEDER) under the project TIN2016-075985-P.
[-]
|
Type:
|
Artículo
|