Mostrar el registro sencillo del ítem
dc.contributor.author | Cortes-Lopez, Victoria | es_ES |
dc.contributor.author | Cubero-García, Sergio | es_ES |
dc.contributor.author | BLASCO IVARS, JOSE | es_ES |
dc.contributor.author | Aleixos Borrás, María Nuria | es_ES |
dc.contributor.author | Talens Oliag, Pau | es_ES |
dc.date.accessioned | 2020-01-30T21:02:02Z | |
dc.date.available | 2020-01-30T21:02:02Z | |
dc.date.issued | 2019 | es_ES |
dc.identifier.issn | 1935-5130 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/136099 | |
dc.description.abstract | [EN] One of the most studied techniques for the non-destructive determination of the internal quality of fruits has been visible and nearinfrared (VIS-NIR) reflectance spectroscopy. This work evaluates a new non-destructive in-line VIS-NIR spectroscopy prototype for in-line identification of five apple varieties, with the advantage that it allows the spectra to be captured with the probe at the same distance from all the fruits regardless of their size. The prototype was tested using varieties with a similar appearance by acquiring the diffuse reflectance spectrum of the fruits travelling on the conveyor belt at a speed of 0.81 m/s which is nearly 1 fruit/s. Principal component analysis (PCA) was used to determine the variables that explain the most variance in the spectra. Seven principal components were then used to perform linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA). QDA was found to be the best in-line classification method, achieving 98% and 85% success rates for red and yellow apple varieties, respectively. The results indicated that the in-line application of VIS-NIR spectroscopy that was developed is potentially feasible for the detection of apple varieties with an accuracy that is similar to or better than a laboratory system. | es_ES |
dc.description.sponsorship | This work was partially funded by the Generalitat Valenciana through project AICO/2015/122 and by INIA and FEDER funds through project RTA2015-00078-00-00. Victoria Cortes Lopez thanks the Spanish Ministry of Education, Culture and Sports for FPU grant (FPU13/04202). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Food and Bioprocess Technology | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Apple | es_ES |
dc.subject | In-line | es_ES |
dc.subject | Varietal discrimination | es_ES |
dc.subject | Visible-near-infrared spectroscopy | es_ES |
dc.subject | Non-destructive | es_ES |
dc.subject.classification | EXPRESION GRAFICA EN LA INGENIERIA | es_ES |
dc.subject.classification | TECNOLOGIA DE ALIMENTOS | es_ES |
dc.title | In-line Application of Visible and Near-Infrared Diffuse Reflectance Spectroscopy to Identify Apple Varieties | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s11947-019-02268-0 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MECD//FPU13%2F04202/ES/FPU13%2F04202/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//AICO%2F2015%2F122/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//RTA2015-00078-00-00/ES/Sistemas no destructivos para la determinación automática de la calidad interna de frutas en línea utilizando métodos ópticos e información espectral/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Gráfica - Departament d'Enginyeria Gràfica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Mecanización y Tecnología Agraria - Departament de Mecanització i Tecnologia Agrària | es_ES |
dc.description.bibliographicCitation | Cortes-Lopez, V.; Cubero-García, S.; Blasco Ivars, J.; Aleixos Borrás, MN.; Talens Oliag, P. (2019). In-line Application of Visible and Near-Infrared Diffuse Reflectance Spectroscopy to Identify Apple Varieties. Food and Bioprocess Technology. 12(6):1021-1030. https://doi.org/10.1007/s11947-019-02268-0 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s11947-019-02268-0 | es_ES |
dc.description.upvformatpinicio | 1021 | es_ES |
dc.description.upvformatpfin | 1030 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 12 | es_ES |
dc.description.issue | 6 | es_ES |
dc.relation.pasarela | S\385868 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Educación, Cultura y Deporte | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Aleixandre-Tudo, J. L., Nieuwoudt, H., & du Toit, W. (2019). Towards on-line monitoring of phenolic content in red wine grapes: a feasibility study. Food Chemistry, 270, 322–331. | es_ES |
dc.description.references | Alonso, J., Artigas, J., & Jimenez, C. (2003). Analysis and identification of several apple varieties using ISFETs sensors. Talanta, 59(6), 1245–1252. | es_ES |
dc.description.references | Beebe, K. R., Pell, R. J., & Seasholtz, M. B. (1998). In: Chemometrics: a practical guide, New York. USA: John Wiley and Sons. | es_ES |
dc.description.references | Beghi, R., Giovenzana, V., Brancadoro, L., & Guidetti, R. (2017). Rapid evaluation of grape phytosanitary status directly at the check point station entering the winery by using visible/near infrared spectroscopy. Journal of Food Engineering, 204, 46–54. | es_ES |
dc.description.references | Brunt, K., Smits, B., & Holthuis, H. (2010). Design, construction, and testing of an automated NIR in-line analysis system for potatoes. Part II. Development and testin of the automated semi-industrial system with in-line NIR for the characterization of potatoes. Potato Research, 53(1), 41–60. | es_ES |
dc.description.references | Bruun, S. W., Sondergaard, I., & Jacobsen, S. (2007). Analysis of protein structures and interactions in complex food by near-infrared spectroscopy. 1. Gluten powder. Journal of Agricultural and Food Chemistry, 55(18), 7234–7243. | es_ES |
dc.description.references | Carr, G. L., Chubar, O., & Dumas, P. (2005). Spectrochemical analysis using infrared multichannel detectors. In R. Bhargava & I. W. Levin (Eds.), 1st ed (pp. 56–84). Oxford: Wiley-Blackwell. | es_ES |
dc.description.references | Casale, M., Casolino, C., Ferrari, G., & Forina, M. (2008). Near infrared spectroscopy and class modelling techniques for geographical authentication of Ligurian extra virgin olive oil. Journal of Near Infrared Spectroscopy, 16(1), 39–47. | es_ES |
dc.description.references | Cortés, V., Ortiz, C., Aleixos, N., Blasco, J., Cubero, S., & Talens, P. (2016). A new internal quality index for mango and its prediction by external visible and near infrared reflection spectroscopy. Postharvest Biology and Technology, 118, 148–158. | es_ES |
dc.description.references | Fernández-Ahumada, E., Garrido-Varo, A., Guerrero-Ginel, A. E., Wubbels, A., van der Sluis, C., & van der Meer, J. M. (2006). Understanding factors affecting near infrared analysis of potato constituents. Journal of Near Infrared Spectroscopy, 14(1), 27–35. | es_ES |
dc.description.references | He, Y., Li, X., & Shao, Y. (2007). Fast discrimination of apple varieties using Vis/NIR spectroscopy. International Journal of Food Properties, 10(1), 9–18. | es_ES |
dc.description.references | Hernández, A., He, Y., & García, A. (2006). Non-destructive measurement of acidity, soluble solids and firmness of Satsuma mandarin using Vis/NIR-spectroscopy techniques. Journal of Food Engineering, 77, 313–319. | es_ES |
dc.description.references | Huang, H., Yu, H., Xu, H., & Ying, Y. (2008). Near infrared spectroscopy for on/in-line monitoring of quality in foods and beverages: a review. Journal of Food Engineering, 87(3), 303–313. | es_ES |
dc.description.references | James, G., Witten, D., Hastie, T., & Tibshirani, R. (2014). An introduction to statistical learning: with applications in R. New York: springer. | es_ES |
dc.description.references | Jie, D., Xie, L., Rao, X., & Ying, Y. (2014). Using visible and near infrared diffuse transmittance technique to predict soluble solids content of watermelon in an on-line detection system. Postharvest Biology and Technology, 90, 1–6. | es_ES |
dc.description.references | Kader, A. A., Kasmire, R. F., Mitchell, F. G., Reid, M. S., Sommer, N. F., & Thompson, J. F. (1985). Postharvest technology of horticultural crops (Special publication, mum. 3311, p. 192). Davis: Cooperative Extension, University of California. | es_ES |
dc.description.references | Kozak, M., & Scaman, C. H. (2008). Unsupervised classification methods in food sciences: discussion and outlook. Journal of the Science of Food and Agriculture, 88(7), 1115–1127. | es_ES |
dc.description.references | Lammertyn, J., De Baerdemaeker, J., & Nicolaï, B. (2000). Light penetration properties of NIR radiation in fruit with respect to non-destructive quality assessment. Postharvest Biology and Technology, 18(2), 121–132. | es_ES |
dc.description.references | Liu, F., Jiang, Y., & He, Y. (2009). Variable selection in visible/near infrared spectra for linear and nonlinear calibrations: a case study to determine soluble solids content of beer. Analytica Chimica Acta, 635(1), 45–52. | es_ES |
dc.description.references | López, A. F. (2003). ‘Manual para la preparación y venta de frutas y hortalizas, del campo al mercado’. PDF File: Boletín de servicios agrícolas de la FAO, 151. http://www.fao.org/tempref/docrep/fao/006/y4893S/y4893S00.pdf . Accessed 20 Aug 2018. | es_ES |
dc.description.references | Lorente, D., Escandell-Montero, P., Cubero, S., Gómez-Sanchis, J., & Blasco, J. (2015). Visible-NIR reflectance spectroscopy and manifold learning methods applied to the detection of fungal infections on citrus fruit. Journal of Food Engineering, 163, 17–21. | es_ES |
dc.description.references | Luo, W., Huan, S., Fu, H., Wen, G., Cheng, H., Zhou, J., Wu, H., Shen, G., & Yu, R. (2011). Preliminary study on the application of near infrared spectroscopy and pattern recognition methods to classify different types of apples. Food Chemistry, 128(2), 555–561. | es_ES |
dc.description.references | Marrazzo, W. N., Heinemann, P. H., Crassweller, R. E., & LeBlanc, E. (2005). Electronic nose chemical sensor feasibility study for the differentiation of apple cultivars. American Society of Agricultural Engineers, 48(5), 1995–2002. | es_ES |
dc.description.references | Martens, H., Nielsen, J. P., & Engelsen, S. B. (2003). Light scattering and light absorbance separated by extended multiplicative signal correction. Application to near-infrared transmission analysis of powder mixtures. Analytical Chemistry, 75(3), 394–404. | es_ES |
dc.description.references | Næs, T., Isaksson, T., Fearn, T., & Davies, T. (2002). A user-friendly guide to multivariate calibration and classification. Chichester: NIR Publications. | es_ES |
dc.description.references | Rodríguez-Campos, J., Escalona-Buendía, H. B., Orozco-Avila, I., Lugo-Cervantes, E., & Jaramillo-Flores, M. E. (2011). Dynamics of volatile and non-volatile compounds in cocoa (Theobroma cacao L.) during fermentation and drying processes using principal components analysis. Food Research International, 44(1), 250–258. | es_ES |
dc.description.references | Ronald, M., & Evans, M. (2016). Classification of selected apple fruit varieties using Naive Bayes. Indian Journal of Computer Science and Engineering, 7(1), 13–19. | es_ES |
dc.description.references | Sabanci, K., & Ünlersen, M. F. (2016). Different apple varieties classification using kNN and MLP algorithms. International Journal of Intelligent Systems and Applications in Engineering, 4(1), 166–169. | es_ES |
dc.description.references | Sádecká, J., Jakubíková, M., Májek, P., & Kleinová, A. (2016). Classification of plum spirit drinks by synchronous fluorescence spectroscopy. Food Chemistry, 196, 783–790. | es_ES |
dc.description.references | Salguero-Chaparro, L., Baeten, V., Abbas, O., & Peña-Rodríguez, F. (2012). On-line analysis of intact olive fruits by vis-NIR spectroscopy: optimisation of the acquisition parameters. Journal of Food Engineering, 112(3), 152–157. | es_ES |
dc.description.references | Santos, P., Santos, F., Santos, J., & Bezerra, H. (2013). Application of extended multiplicative signal correction to short-wavelength near infrared spectra of moisture in marzipan. Journal of Data Analysis and Information Processing, 1(03), 30–34. | es_ES |
dc.description.references | Shang, L., Guo, W., & Nelson, S. O. (2015). Apple variety identification based on dielectric spectra and chemometric methods. Food Anal. Methods, 8(4), 1042–1052. | es_ES |
dc.description.references | Shao, Y., He, Y., Gómez, A. H., Pereir, A. G., Qiu, Z., & Zhang, Y. (2007). Visible/near infrared spectrometric technique for nondestructive assessment of tomato ‘Heatwave’ (Lycopersicumesculentum) quality characteristics. Journal of Food Engineering, 81(4), 672–678. | es_ES |
dc.description.references | Shenderey, C., Shmulevich, I., Alchanatis, V., Egozi, H., Hoffman, A., Ostrovsky, V., Lurie, S., Arie, R. B., & Schmilovitch, Z. (2010). NIRS detection of moldy core in apples. Food Bioprocess Technology, 3(1), 79–86. | es_ES |
dc.description.references | Soares, S. F. C., Gomes, A. A., Galvão Filho, A. R., Araújo, M. C. U., & Galvão, R. K. H. (2013). The successive projections algorithm. Trends in Analytical Chemistry, 42, 84–98. | es_ES |
dc.description.references | Song, W., Wang, H., Maguire, P., & Nibouche, O. (2017). Differentiation of organic and non-organic apples using near infrared reflectance apectroscopy – a pattern recognition approach. In Unknown host publication (pp. 1–3). https://doi.org/10.1109/ICSENS.2016.7808530 . | es_ES |
dc.description.references | Sun, X., Liu, Y., Li, Y., Wu, M., & Zhu, D. (2016). Simultaneous measurements of Brown core and soluble solids content in pear by on-line visible and near infrared spectroscopy. Postharvest Biology and Technology, 116, 80–87. | es_ES |
dc.description.references | Wojdyło, A., Oszmiański, J., & Laskowski, P. (2008). Polyphenolic compounds and antioxidant activity of new and old apple varieties. Journal of Agricultural and Food Chemistry, 56(15), 6520–6530. | es_ES |
dc.description.references | Wu, X., Wu, B., Sun, J., Li, M., & Du, H. (2016). Discrimination of apples using near infrared spectroscopy and sorting discriminant analysis. International Journal of Food Properties, 19(5), 1016–1028. | es_ES |
dc.description.references | Wu, X., Wu, B., Sun, J., & Yang, N. (2017). Classification of Apple varieties using near infrared reflectance spectroscopy and fuzzy discriminant C-Means clustering model. Journal of Food Process Engineering, 40, 1–7. | es_ES |