- -

Next generation modeling in GWAS: comparing different genetic architectures

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Next generation modeling in GWAS: comparing different genetic architectures

Show simple item record

Files in this item

dc.contributor.author López de Maturana, Evangelina es_ES
dc.contributor.author Ibáñez-Escriche, Noelia es_ES
dc.contributor.author González-Recio, Oscar es_ES
dc.contributor.author Marenne, Gaëlle es_ES
dc.contributor.author Mehrban, Hossein es_ES
dc.contributor.author Chanock, Stephen J. es_ES
dc.contributor.author Goddard, Michael E. es_ES
dc.contributor.author Malats, Núria es_ES
dc.date.accessioned 2020-01-31T21:02:48Z
dc.date.available 2020-01-31T21:02:48Z
dc.date.issued 2014 es_ES
dc.identifier.issn 0340-6717 es_ES
dc.identifier.uri http://hdl.handle.net/10251/136134
dc.description.abstract [EN] The continuous advancement in genotyping technology has not been accompanied by the application of innovative statistical methods, such as multi-marker methods (MMM), to unravel genetic associations with complex traits. Although the performance of MMM has been widely explored in a prediction context, little is known on their behavior in the quantitative trait loci (QTL) detection under complex genetic architectures. We shed light on this still open question by applying Bayes A (BA) and Bayesian LASSO (BL) to simulated and real data. Both methods were compared to the single marker regression (SMR). Simulated data were generated in the context of six scenarios differing on effect size, minor allele frequency (MAF) and linkage disequilibrium (LD) between QTLs. These were based on real SNP genotypes in chromosome 21 from the Spanish Bladder Cancer Study. We show how the genetic architecture dramatically affects the behavior of the methods in terms of power, type I error and accuracy of estimates. Markers with high MAF are easier to detect by all methods, especially if they have a large effect on the phenotypic trait. A high LD between QTLs with either large or small effects differently affects the power of the methods: it impairs QTL detection with BA, irrespectively of the effect size, although boosts that of small effects with BL and SMR. We demonstrate the convenience of applying MMM rather than SMR because of their larger power and smaller type I error. Results from real data when applying MMM suggest novel associations not detected by SMR. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Human Genetics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification PRODUCCION ANIMAL es_ES
dc.title Next generation modeling in GWAS: comparing different genetic architectures es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00439-014-1461-1 es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal es_ES
dc.description.bibliographicCitation López De Maturana, E.; Ibáñez-Escriche, N.; González-Recio, O.; Marenne, G.; Mehrban, H.; Chanock, SJ.; Goddard, ME.... (2014). Next generation modeling in GWAS: comparing different genetic architectures. Human Genetics. 133(10):1235-1253. https://doi.org/10.1007/s00439-014-1461-1 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s00439-014-1461-1 es_ES
dc.description.upvformatpinicio 1235 es_ES
dc.description.upvformatpfin 1253 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 133 es_ES
dc.description.issue 10 es_ES
dc.relation.pasarela S\343535 es_ES
dc.relation.references Andrews DF, Malows CL (1974) Scale mixtures of normal distributions. J R Stat Soc Ser B 36:99–102 es_ES
dc.relation.references Che X, Xu S (2010) Significance test and genome selection in Bayesian shrinkage analysis. Int J Plant Genomics 2010:893206 es_ES
dc.relation.references Czene K, Lichtenstein P, Hemminki K (2002) Environmental and heritable causes of cancer among 9.6 million individuals in the Swedish family-cancer database. Int J Cancer 99:260–266 es_ES
dc.relation.references de Los Campos G, Hickey JM, Pong-Wong R, Daetwyler HD, Calus MP (2013) Whole-genome regression and prediction methods applied to plant and animal breeding. Genetics 193:327–345 es_ES
dc.relation.references de Maturana EL, Ye Y, Calle ML, Rothman N, Urrea V, Kogevinas M, Petrus S, Chanock SJ, Tardon A, Garcia-Closas M, Gonzalez-Neira A, Vellalta G, Carrato A, Navarro A, Lorente-Galdos B, Silverman DT, Real FX, Wu X, Malats N (2013) Application of multi-SNP approaches Bayesian LASSO and AUC-RF to detect main effects of inflammatory-gene variants associated with bladder cancer risk. PLoS One 8:e83745 es_ES
dc.relation.references Figueroa JD, Ye Y, Siddiq A, Garcia-Closas M, Chatterjee N, Prokunina-Olsson L, Cortessis VK, Kooperberg C, Cussenot O, Benhamou S, Prescott J, Porru S, Dinney CP, Malats N, Baris D, Purdue M, Jacobs EJ, Albanes D, Wang Z, Deng X, Chung CC, Tang W, Bas Bueno-de-Mesquita H, Trichopoulos D, Ljungberg B, Clavel-Chapelon F, Weiderpass E, Krogh V, Dorronsoro M, Travis R, Tjonneland A, Brenan P, Chang-Claude J, Riboli E, Conti D, Gago-Dominguez M, Stern MC, Pike MC, Van Den Berg D, Yuan JM, Hohensee C, Rodabough R, Cancel-Tassin G, Roupret M, Comperat E, Chen C, De Vivo I, Giovannucci E, Hunter DJ, Kraft P, Lindstrom S, Carta A, Pavanello S, Arici C, Mastrangelo G, Kamat AM, Lerner SP, Barton Grossman H, Lin J, Gu J, Pu X, Hutchinson A, Burdette L, Wheeler W, Kogevinas M, Tardon A, Serra C, Carrato A, Garcia-Closas R, Lloreta J, Schwenn M, Karagas MR, Johnson A, Schned A, Armenti KR, Hosain GM, Andriole G Jr, Grubb R 3rd, Black A, Ryan Diver W, Gapstur SM, Weinstein SJ, Virtamo J, Haiman CA, Landi MT, Caporaso N, Fraumeni JF Jr, Vineis P, Wu X, Silverman DT, Chanock S, Rothman N (2014) Genome-wide association study identifies multiple loci associated with bladder cancer risk. Hum Mol Genet 23:1387–1398 es_ES
dc.relation.references Fortuny J, Kogevinas M, Garcia-Closas M, Real FX, Tardon A, Villanueva C, Dosemeci M, Malats N, Silverman D (2006) Use of analgesics and nonsteroidal anti-inflammatory drugs, genetic predisposition, and bladder cancer risk in Spain. Cancer Epidemiol Biomark Prev 16:1696–1702 es_ES
dc.relation.references Foulkes AS (2009) Applied statistical genetics with R for population-based association studies. Springer Science + Business Media, LLC, New York es_ES
dc.relation.references Garcia-Closas M, Malats N, Silverman D, Dosemeci M, Kogevinas M, Hein DW, Tardon A, Serra C, Carrato A, Garcia-Closas R, Lloreta J, Castano-Vinyals G, Yeager M, Welch R, Chanock S, Chatterjee N, Wacholder S, Samanic C, Tora M, Fernandez F, Real FX, Rothman N (2005) NAT2 slow acetylation, GSTM1 null genotype, and risk of bladder cancer: results from the Spanish Bladder Cancer Study and meta-analyses. Lancet 366:649–659 es_ES
dc.relation.references Garcia-Closas M, Rothman N, Figueroa JD, Prokunina-Olsson L, Han SS, Baris D, Jacobs EJ, Malats N, De Vivo I, Albanes D, Purdue MP, Sharma S, Fu YP, Kogevinas M, Wang Z, Tang W, Tardon A, Serra C, Carrato A, Garcia-Closas R, Lloreta J, Johnson A, Schwenn M, Karagas MR, Schned A, Andriole G Jr, Grubb R 3rd, Black A, Gapstur SM, Thun M, Diver WR, Weinstein SJ, Virtamo J, Hunter DJ, Caporaso N, Landi MT, Hutchinson A, Burdett L, Jacobs KB, Yeager M, Fraumeni JF Jr, Chanock SJ, Silverman DT, Chatterjee N (2013) Common genetic polymorphisms modify the effect of smoking on absolute risk of bladder cancer. Cancer Res 73:2211–2220 es_ES
dc.relation.references Gianola D (2013) Priors in whole-genome regression: the Bayesian alphabet returns. Genetics 194:573–596 es_ES
dc.relation.references Gianola D, de los Campos G, Hill WG, Manfredi E, Fernando R (2009) Additive genetic variability and the Bayesian alphabet. Genetics 183: 347-63 es_ES
dc.relation.references Gibson G (2012) Rare and common variants: twenty arguments. Nat Rev Genet 13:135–145 es_ES
dc.relation.references González-Recio O, López de Maturana E, Vega AT, Engelman CD, Broman KW (2009) Detecting single-nucleotide polymorphism by single-nucleotide polymorphism interactions in rheumatoid arthritis using a two-step approach with machine learning and a Bayesian threshold least absolute shrinkage and selection operator (LASSO) model. In: BMC proceedings, vol 3 (suppl 7) es_ES
dc.relation.references Haiman CA, Han Y, Feng Y, Xia L, Hsu C, Sheng X, Pooler LC, Patel Y, Kolonel LN, Carter E, Park K, Le Marchand L, Van Den Berg D, Henderson BE, Stram DO (2013) Genome-wide testing of putative functional exonic variants in relationship with breast and prostate cancer risk in a multiethnic population. PLoS Genet 9:e1003419 es_ES
dc.relation.references Heaton MJ, Scott JG (2010) Bayesian computation and the linear model. In: Chen MH, Dey DK, Müller P, Sun D, Ye K (eds) Frontiers of statistical decision making and Bayesian analysis. Springer, New York, pp 527–545 es_ES
dc.relation.references Hirschhorn JN, Lindgren CM, Daly MJ, Kirby A, Schaffner SF, Burtt NP, Altshuler D, Parker A, Rioux JD, Platko J, Gaudet D, Hudson TJ, Groop LC, Lander ES (2001) Genomewide linkage analysis of stature in multiple populations reveals several regions with evidence of linkage to adult height. Am J Hum Genet 69:106–116 es_ES
dc.relation.references Huang J, Ye X, Guan J, Chen B, Li Q, Zheng X, Liu L, Wang S, Ding Y, Chen L (2013) Tiam1 is associated with hepatocellular carcinoma metastasis. Int J Cancer 132:90–100 es_ES
dc.relation.references Karkkainen HP, Sillanpaa MJ (2012) Robustness of Bayesian multilocus association models to cryptic relatedness. Ann Hum Genet 76:510–523 es_ES
dc.relation.references Kim DK, Cho MH, Hersh CP, Lomas DA, Miller BE, Kong X, Bakke P, Gulsvik A, Agusti A, Wouters E, Celli B, Coxson H, Vestbo J, MacNee W, Yates JC, Rennard S, Litonjua A, Qiu W, Beaty TH, Crapo JD, Riley JH, Tal-Singer R, Silverman EK (2012) Genome-wide association analysis of blood biomarkers in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 186:1238–1247 es_ES
dc.relation.references Lango Allen H, Estrada K, Lettre G, Berndt SI, Weedon MN, Rivadeneira F, Willer CJ, Jackson AU, Vedantam S, Raychaudhuri S, Ferreira T, Wood AR, Weyant RJ, Segre AV, Speliotes EK, Wheeler E, Soranzo N, Park JH, Yang J, Gudbjartsson D, Heard-Costa NL, Randall JC, Qi L, Vernon Smith A, Magi R, Pastinen T, Liang L, Heid IM, Luan J, Thorleifsson G, Winkler TW, Goddard ME, Sin Lo K, Palmer C, Workalemahu T, Aulchenko YS, Johansson A, Zillikens MC, Feitosa MF, Esko T, Johnson T, Ketkar S, Kraft P, Mangino M, Prokopenko I, Absher D, Albrecht E, Ernst F, Glazer NL, Hayward C, Hottenga JJ, Jacobs KB, Knowles JW, Kutalik Z, Monda KL, Polasek O, Preuss M, Rayner NW, Robertson NR, Steinthorsdottir V, Tyrer JP, Voight BF, Wiklund F, Xu J, Zhao JH, Nyholt DR, Pellikka N, Perola M, Perry JR, Surakka I, Tammesoo ML, Altmaier EL, Amin N, Aspelund T, Bhangale T, Boucher G, Chasman DI, Chen C, Coin L, Cooper MN, Dixon AL, Gibson Q, Grundberg E, Hao K, Juhani Junttila M, Kaplan LM, Kettunen J, Konig IR, Kwan T, Lawrence RW, Levinson DF, Lorentzon M, McKnight B, Morris AP, Muller M, Suh Ngwa J, Purcell S, Rafelt S, Salem RM, Salvi E et al (2010) Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature 467:832–838 es_ES
dc.relation.references Li J, Das K, Fu G, Li R, Wu R (2011) The Bayesian lasso for genome-wide association studies. Bioinformatics 27:516–523 es_ES
dc.relation.references Li J, Liang S, Jin H, Xu C, Ma D, Lu X (2012) Tiam1, negatively regulated by miR-22, miR-183 and miR-31, is involved in migration, invasion and viability of ovarian cancer cells. Oncol Rep 27:1835–1842 es_ES
dc.relation.references Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M, Pukkala E, Skytthe A, Hemminki K (2000) Environmental and heritable factors in the causation of cancer—analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med 343:78–85 es_ES
dc.relation.references Line A, Slucka Z, Stengrevics A, Silina K, Li G, Rees RC (2002) Characterisation of tumour-associated antigens in colon cancer. Cancer Immunol Immunother 51:574–582 es_ES
dc.relation.references Maher B (2008) Personal genomes: the case of the missing heritability. Nature 456:18–21 es_ES
dc.relation.references Makowsky R, Pajewski NM, Klimentidis YC, Vazquez AI, Duarte CW, Allison DB, de los Campos G (2011) Beyond missing heritability: prediction of complex traits. PLoS Genet 7:e1002051 es_ES
dc.relation.references Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, McCarthy MI, Ramos EM, Cardon LR, Chakravarti A, Cho JH, Guttmacher AE, Kong A, Kruglyak L, Mardis E, Rotimi CN, Slatkin M, Valle D, Whittemore AS, Boehnke M, Clark AG, Eichler EE, Gibson G, Haines JL, Mackay TF, McCarroll SA, Visscher PM (2009) Finding the missing heritability of complex diseases. Nature 461:747–753 es_ES
dc.relation.references Meuwissen TH, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829 es_ES
dc.relation.references Murta-Nascimento C, Schmitz-Drager BJ, Zeegers MP, Steineck G, Kogevinas M, Real FX, Malats N (2007) Epidemiology of urinary bladder cancer: from tumor development to patient’s death. World J Urol 25:285–295 es_ES
dc.relation.references Mutshinda CM, Sillanpaa MJ (2012) A decision rule for quantitative trait locus detection under the extended Bayesian LASSO model. Genetics 192:1483–1491 es_ES
dc.relation.references Nagasaki S, Nakano Y, Masuda M, Ono K, Miki Y, Shibahara Y, Sasano H (2012) Phosphodiesterase type 9 (PDE9) in the human lower urinary tract: an immunohistochemical study. BJU Int 109:934–940 es_ES
dc.relation.references Park T, Casella G (2008) The Bayesian LASSO. J Am Statist Assoc 103:681–686 es_ES
dc.relation.references Rothman N, Garcia-Closas M, Chatterjee N, Malats N, Wu X, Figueroa JD, Real FX, Van Den Berg D, Matullo G, Baris D, Thun M, Kiemeney LA, Vineis P, De Vivo I, Albanes D, Purdue MP, Rafnar T, Hildebrandt MA, Kiltie AE, Cussenot O, Golka K, Kumar R, Taylor JA, Mayordomo JI, Jacobs KB, Kogevinas M, Hutchinson A, Wang Z, Fu YP, Prokunina-Olsson L, Burdett L, Yeager M, Wheeler W, Tardon A, Serra C, Carrato A, Garcia-Closas R, Lloreta J, Johnson A, Schwenn M, Karagas MR, Schned A, Andriole G Jr, Grubb R 3rd, Black A, Jacobs EJ, Diver WR, Gapstur SM, Weinstein SJ, Virtamo J, Cortessis VK, Gago-Dominguez M, Pike MC, Stern MC, Yuan JM, Hunter DJ, McGrath M, Dinney CP, Czerniak B, Chen M, Yang H, Vermeulen SH, Aben KK, Witjes JA, Makkinje RR, Sulem P, Besenbacher S, Stefansson K, Riboli E, Brennan P, Panico S, Navarro C, Allen NE, Bueno-de-Mesquita HB, Trichopoulos D, Caporaso N, Landi MT, Canzian F, Ljungberg B, Tjonneland A, Clavel-Chapelon F, Bishop DT, Teo MT, Knowles MA, Guarrera S, Polidoro S, Ricceri F, Sacerdote C, Allione A, Cancel-Tassin G, Selinski S, Hengstler JG, Dietrich H, Fletcher T, Rudnai P, Gurzau E, Koppova K, Bolick SC, Godfrey A, Xu Z et al (2010) A multi-stage genome-wide association study of bladder cancer identifies multiple susceptibility loci. Nat Genet 42:978–984 es_ES
dc.relation.references Sale MM, Freedman BI, Hicks PJ, Williams AH, Langefeld CD, Gallagher CJ, Bowden DW, Rich SS (2005) Loci contributing to adult height and body mass index in African American families ascertained for type 2 diabetes. Ann Hum Genet 69:517–527 es_ES
dc.relation.references Sato Y, Yamamoto N, Kunitoh H, Ohe Y, Minami H, Laird NM, Katori N, Saito Y, Ohnami S, Sakamoto H, Sawada J, Saijo N, Yoshida T, Tamura T (2011) Genome-wide association study on overall survival of advanced non-small cell lung cancer patients treated with carboplatin and paclitaxel. J Thorac Oncol 6:132–138 es_ES
dc.relation.references Vazquez AI, de los Campos G, Klimentidis YC, Rosa GJ, Gianola D, Yi N, Allison DB (2012) A comprehensive genetic approach for improving prediction of skin cancer risk in humans. Genetics 192:1493–1502 es_ES
dc.relation.references Wang W, Tang Y, Ni L, Kim E, Jongwutiwes T, Hourvitz A, Zhang R, Xiong H, Liu HC, Rosenwaks Z (2012) Overexpression of uromodulin-like1 accelerates follicle depletion and subsequent ovarian degeneration. Cell Death Dis 3:e433 es_ES
dc.relation.references Weedon MN, Lango H, Lindgren CM, Wallace C, Evans DM, Mangino M, Freathy RM, Perry JR, Stevens S, Hall AS, Samani NJ, Shields B, Prokopenko I, Farrall M, Dominiczak A, Johnson T, Bergmann S, Beckmann JS, Vollenweider P, Waterworth DM, Mooser V, Palmer CN, Morris AD, Ouwehand WH, Zhao JH, Li S, Loos RJ, Barroso I, Deloukas P, Sandhu MS, Wheeler E, Soranzo N, Inouye M, Wareham NJ, Caulfield M, Munroe PB, Hattersley AT, McCarthy MI, Frayling TM (2008) Genome-wide association analysis identifies 20 loci that influence adult height. Nat Genet 40:575–583 es_ES
dc.relation.references Wright S (1934) An analysis of variability in number of digits in an inbred strain of Guinea pigs. Genetics 19:506–536 es_ES
dc.relation.references Wu X, Ye Y, Kiemeney LA, Sulem P, Rafnar T, Matullo G, Seminara D, Yoshida T, Saeki N, Andrew AS, Dinney CP, Czerniak B, Zhang ZF, Kiltie AE, Bishop DT, Vineis P, Porru S, Buntinx F, Kellen E, Zeegers MP, Kumar R, Rudnai P, Gurzau E, Koppova K, Mayordomo JI, Sanchez M, Saez B, Lindblom A, de Verdier P, Steineck G, Mills GB, Schned A, Guarrera S, Polidoro S, Chang SC, Lin J, Chang DW, Hale KS, Majewski T, Grossman HB, Thorlacius S, Thorsteinsdottir U, Aben KK, Witjes JA, Stefansson K, Amos CI, Karagas MR, Gu J (2009) Genetic variation in the prostate stem cell antigen gene PSCA confers susceptibility to urinary bladder cancer. Nat Genet 41:991–995 es_ES
dc.relation.references Xu S (2003) Estimating polygenic effects using markers of the entire genome. Genetics 163:789–801 es_ES
dc.relation.references Xue J, Zhao H, Shang G, Zou R, Dai Z, Zhou D, Huang Q, Xu Y (2013) RIP140 is associated with subclinical inflammation in type 2 diabetic patients. Exp Clin Endocrinol Diabetes 121:37–42 es_ES
dc.relation.references Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR, Madden PA, Heath AC, Martin NG, Montgomery GW, Goddard ME, Visscher PM (2010) Common SNPs explain a large proportion of the heritability for human height. Nat Genet 42:565–569 es_ES
dc.relation.references Yi N, Xu S (2008) Bayesian LASSO for quantitative trait locus mapping. Genetics 179:1045–1055 es_ES


This item appears in the following Collection(s)

Show simple item record