- -

Hybrid approach of discrete event simulation integrated with location search algorithm in a cells assignment problem: a case study

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Hybrid approach of discrete event simulation integrated with location search algorithm in a cells assignment problem: a case study

Show simple item record

Files in this item

dc.contributor.author Saez-Mas, Aida es_ES
dc.contributor.author García Sabater, Julio Juan es_ES
dc.contributor.author García Sabater, José Pedro es_ES
dc.contributor.author Maheut, Julien es_ES
dc.date.accessioned 2020-02-02T21:00:52Z
dc.date.available 2020-02-02T21:00:52Z
dc.date.issued 2020 es_ES
dc.identifier.issn 1435-246X es_ES
dc.identifier.uri http://hdl.handle.net/10251/136174
dc.description.abstract [EN] This paper presents a case study describing a cell assignment problem in an assembly facility. These cells receive parts from external suppliers, and sort and sequence these parts to feed the final assembly line. Therefore, to each cell are associated important inbound and outbound flows generating hundreds of material handling equipment movements along the facility, impacting the traffic density and causing eventually safety issues in the plant. Following an important plant redesign, cells have been relocated, and the plant managers need to decide how to manage the new logistic flows. To that aim, a hybrid approach encompassing mathematical optimization and discrete event simulation (DES) is proposed. This approach allows us to reduce complexity by decomposing the design into two phases. The first phase deals with the problem of generating cell¿s assignment alternatives by using a heuristic method to find good quality solutions. Then, a DES software is used to dynamically evaluate the performance of the solutions with respect to operational features such as traffic congestion and intensity. This second phase provides interesting managerial insights on the manufacturing system from both quantitative and qualitative aspects related to in-plant safety and traffic. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Central European Journal of Operations Research es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Facility layout problem (FLP) es_ES
dc.subject Supply logistics es_ES
dc.subject Material flow es_ES
dc.subject Traffic congestion es_ES
dc.subject Automobile assembly line es_ES
dc.subject.classification ORGANIZACION DE EMPRESAS es_ES
dc.title Hybrid approach of discrete event simulation integrated with location search algorithm in a cells assignment problem: a case study es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10100-018-0548-5 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Organización de Empresas - Departament d'Organització d'Empreses es_ES
dc.description.bibliographicCitation Saez-Mas, A.; García Sabater, JJ.; García Sabater, JP.; Maheut, J. (2020). Hybrid approach of discrete event simulation integrated with location search algorithm in a cells assignment problem: a case study. Central European Journal of Operations Research. 28(1):125-142. https://doi.org/10.1007/s10100-018-0548-5 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s10100-018-0548-5 es_ES
dc.description.upvformatpinicio 125 es_ES
dc.description.upvformatpfin 142 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 28 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\375576 es_ES
dc.description.references Anjos MF, Vieira MVC (2017) Mathematical optimization approaches for facility layout problems: the state-of-the-art and future research directions. Eur J Oper Res 261(1):1–16. https://doi.org/10.1016/j.ejor.2017.01.049 es_ES
dc.description.references Battini D, Boysen N, Emde S (2013) Just-in-time supermarkets for part supply in the automobile industry. J Manag Control 24(2):209–217. https://doi.org/10.1007/s00187-012-0154-y es_ES
dc.description.references Benjaafar S (2002) Modeling and analysis of congestion in the design of facility layouts. Manag Sci 48(5):679–704. https://doi.org/10.1287/mnsc.48.5.679.7800 es_ES
dc.description.references Board TR (2010) Highway capacity manual. Environmental Protection es_ES
dc.description.references Boysen N, Emde S, Hoeck M, Kauderer M (2015) Part logistics in the automotive industry: decision problems, literature review and research agenda. Eur J Oper Res 242(1):107–120. https://doi.org/10.1016/j.ejor.2014.09.065 es_ES
dc.description.references Caputo AC, Pelagagge PM, Salini P (2015) Modeling errors in kitting processes for assembly lines feeding. IFAC Proc Vol (IFAC PapersOnline) 48(3):338–344. https://doi.org/10.1016/j.ifacol.2015.06.104 es_ES
dc.description.references Centobelli P, Cerchione R, Murino T (2016) Layout and material flow optimization in digital factory. Int J Simul Model 15(2):223–235. https://doi.org/10.2507/IJSIMM15(2)3.327 es_ES
dc.description.references Dehghanimohammadabadi M, Keyser TK (2017) Intelligent simulation: integration of SIMIO and MATLAB to deploy decision support systems to simulation environment. Simul Model Pract Theory 71:45–60. https://doi.org/10.1016/j.simpat.2016.08.007 es_ES
dc.description.references Ficko M, Palcic I (2013) Designing a layout using the modified triangle method, and genetic algorithms. Int J Simul Model 12(4):237–251. https://doi.org/10.2507/IJSIMM12(4)3.244 es_ES
dc.description.references Gamberi M, Manzini R, Regattieri A (2009) An new approach for the automatic analysis and control of material handling systems: integrated layout flow analysis (ILFA). Int J Adv Manuf Technol 41(1–2):156–167. https://doi.org/10.1007/s00170-008-1466-9 es_ES
dc.description.references Gould O, Colwill J (2015) A framework for material flow assessment in manufacturing systems. J Ind Prod Eng 32(1):55–66. https://doi.org/10.1080/21681015.2014.1000403 es_ES
dc.description.references Hasda RK, Bhattacharjya RK, Bennis F (2016) Modified genetic algorithms for solving facility layout problems. Int J Interact Des Manuf (IJIDeM) 11(3):1–13. https://doi.org/10.1007/s12008-016-0362-z es_ES
dc.description.references Imran M, Kang C, Hae Lee Y, Zaib J, Aziz H (2017) Cell formation in a cellular manufacturing system using simulation integrated hybrid genetic algorithm. Comput Ind Eng 105:123–135. https://doi.org/10.1016/j.cie.2016.12.028 es_ES
dc.description.references Iqbal M, Hashmi MSJ (2001) Design and analysis of a virtual factory layout. J Mater Process Technol 118(1–3):403–410. https://doi.org/10.1016/S0924-0136(01)00908-6 es_ES
dc.description.references Jainury SM, Ramli R, Ab Rahman MN, Omar A (2014) Integrated Set Parts Supply system in a mixed-model assembly line. Comput Ind Eng 75(1):266–273. https://doi.org/10.1016/j.cie.2014.07.008 es_ES
dc.description.references Kanduc T, Rodic B (2016) Optimisation of machine layout using a force generated graph algorithm and simulated annealing. Int J Simul Model 15(2):275–287. https://doi.org/10.2507/IJSIMM15(2)7.335 es_ES
dc.description.references Kang J (2001) A new trend of parts supply system in Korean automobile industry; the case of the modular production system at Hyundai Motor Company. In: Proceedings of the fifth Russian-Korean international symposium on science and technology, 2001. KORUS '01. IEEE, Tomsk, Russia, Russia. https://doi.org/10.1109/KORUS.2001.975268 es_ES
dc.description.references Kim J, Yu G, Jang YJ (2016) Semiconductor FAB layout design analysis with 300-mm FAB data: “is minimum distance-based layout design best for semiconductor FAB design?”. Comput Ind Eng 99:330–346. https://doi.org/10.1016/j.cie.2016.02.012 es_ES
dc.description.references Krishnan KK, Jithavech I, Liao H (2009) Mitigation of risk in facility layout design for single and multi-period problems. Int J Prod Res 47(21):5911–5940. https://doi.org/10.1080/00207540802175337 es_ES
dc.description.references Ku M-Y, Hu MH, Wang M-J (2011) Simulated annealing based parallel genetic algorithm for facility layout problem. Int J Prod Res 49(6):1801–1812. https://doi.org/10.1080/00207541003645789 es_ES
dc.description.references Kulturel-Konak S (2017) A matheuristic approach for solving the dynamic facility layout a matheuristic approach for problem solving the dynamic facility layout problem. Proc Comput Sci 108(June):1374–1383. https://doi.org/10.1016/j.procs.2017.05.234 es_ES
dc.description.references Leveson N (2004) A new accident model for engineering safer systems. Saf Sci 42(4):237–270. https://doi.org/10.1016/S0925-7535(03)00047-X es_ES
dc.description.references Negahban A, Smith JS (2014) Simulation for manufacturing system design and operation: literature review and analysis. J Manuf Syst 33(2):241–261. https://doi.org/10.1016/j.jmsy.2013.12.007 es_ES
dc.description.references Prajapat N, Tiwari A (2017) A review of assembly optimisation applications using discrete event simulation. Int J Comput Integr Manuf 30(2–3):215–228. https://doi.org/10.1080/0951192X.2016.1145812 es_ES
dc.description.references Saez-Mas A, Garcia-Sabater JP, Morant-Llorca J (2018) Using 4-layer architecture to simulate product and information flows in manufacturing. Int J Simul Model 17(1):30–41. https://doi.org/10.2507/IJSIMM17(1)408 es_ES
dc.description.references Seebacher G, Winkler H, Oberegger B (2015) In-plant logistics efficiency valuation using discrete event simulation. Int J Simul Model 14:60–70. https://doi.org/10.2507/IJSIMM14(1)6.289 es_ES
dc.description.references Singh RR, Sharma SPK (2006) A review of different approaches to the facility layout problems. Int J Adv Manuf Technol 30(5–6):425–433. https://doi.org/10.1007/s00170-005-0087-9 es_ES
dc.description.references Tompkins J, White J, Bozer Y, Tanchoco J (2003) Facilities planning. Wiley, New York es_ES
dc.description.references Tugnoli A, Khan F, Amyotte P, Cozzani V (2008) Safety assessment in plant layout design using indexing approach: implementing inherent safety perspective. Part 1—guideword applicability and method description. J Hazard Mater 160(1):100–109. https://doi.org/10.1016/j.jhazmat.2008.02.089 es_ES
dc.description.references Zhang M, Batta R, Nagi R (2009) Modeling of workflow congestion and optimization of flow routing in a manufacturing/warehouse facility. Manag Sci 55(2):267–280. https://doi.org/10.1287/mnsc.1080.0916 es_ES
dc.description.references Zhou F, AbouRizk SM, AL-Battaineh H (2009) Optimisation of construction site layout using a hybrid simulation-based system. Simul Model Pract Theory 17(2):348–363. https://doi.org/10.1016/j.simpat.2008.09.011 es_ES
dc.description.references Zhuo L, Chua Kim Huat D, Wee KH (2012) Scheduling dynamic block assembly in shipbuilding through hybrid simulation and spatial optimisation. Int J Prod Res 50(20):5986–6004. https://doi.org/10.1080/00207543.2011.639816 es_ES
dc.description.references Zupan H, Herakovic N, Starbek M (2016) hybrid algorithm based on priority rules for simulation of workshop production. Int J Simul Model 15(1):29–41. https://doi.org/10.2507/IJSIMM15(1)3.319 es_ES


This item appears in the following Collection(s)

Show simple item record