- -

Radio-over-fibre technologies arising from the Building the future Optical Network in Europe (BONE) project

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Radio-over-fibre technologies arising from the Building the future Optical Network in Europe (BONE) project

Show simple item record

Files in this item

dc.contributor.author Parker, M.C. es_ES
dc.contributor.author Walker, S. D. es_ES
dc.contributor.author Llorente, Roberto es_ES
dc.contributor.author Morant, María es_ES
dc.contributor.author Beltrán, Marta es_ES
dc.contributor.author Möllers, I. es_ES
dc.contributor.author Jäger, D. es_ES
dc.contributor.author Vázquez, C. es_ES
dc.contributor.author Montero, D. es_ES
dc.contributor.author Librán, I. es_ES
dc.contributor.author Mikroulis, S. es_ES
dc.contributor.author Karabetsos, S. es_ES
dc.contributor.author Bogris, A. es_ES
dc.date.accessioned 2020-02-07T21:02:13Z
dc.date.available 2020-02-07T21:02:13Z
dc.date.issued 2010 es_ES
dc.identifier.issn 1751-8768 es_ES
dc.identifier.uri http://hdl.handle.net/10251/136474
dc.description.abstract [EN] This study describes a wide range of salient radio-over-fibre system issues. Impulse radio and multiband ultra-wideband signal distribution over both single-mode fibre and multi-mode fibre (MMF) implementations are considered. Carrier frequencies ranging from 3.1 to 10.6 GHz, up to 60 GHz, are featured, and the use of microring laser transmitters is discussed. A cost-performance comparative analysis of competing distributed antenna system topologies is presented, and a theoretical approach to understanding the factors underlying radio-over-MMF performance for within-building applications is discussed. Finally, techniques to minimise thermal impacts on performance are described and novel energy-efficient schemes are introduced. Overall, this study provides a snap-shot of research being undertaken by European institutes involved in the Building the future Optical Network in Europe (BONE) project. es_ES
dc.description.sponsorship The work described in this paper was carried out with the support of the EU-FP7 Network of Excellence BONE project. es_ES
dc.language Inglés es_ES
dc.publisher Institution of Electrical Engineers es_ES
dc.relation COMISION DE LAS COMUNIDADES EUROPEA/216863 es_ES
dc.relation.ispartof IET Optoelectronics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Radio-over-fibre technologies arising from the Building the future Optical Network in Europe (BONE) project es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1049/iet-opt.2009.0062 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Parker, M.; Walker, SD.; Llorente, R.; Morant, M.; Beltrán, M.; Möllers, I.; Jäger, D.... (2010). Radio-over-fibre technologies arising from the Building the future Optical Network in Europe (BONE) project. IET Optoelectronics. 4(6):247-259. https://doi.org/10.1049/iet-opt.2009.0062 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1049/iet-opt.2009.0062 es_ES
dc.description.upvformatpinicio 247 es_ES
dc.description.upvformatpfin 259 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 4 es_ES
dc.description.issue 6 es_ES
dc.relation.pasarela S\39724 es_ES
dc.contributor.funder European Commission es_ES
dc.description.references http://www.ftthcouncil.eu es_ES
dc.description.references Gomes, N. J., Morant, M., Alphones, A., Cabon, B., Mitchell, J. E., Lethien, C., … Iezekiel, S. (2009). Radio-over-fiber transport for the support of wireless broadband services [Invited]. Journal of Optical Networking, 8(2), 156. doi:10.1364/jon.8.000156 es_ES
dc.description.references Thakur, M. P., Quinlan, T. J., Bock, C., Walker, S. D., Toycan, M., Dudley, S. E. M., … Ben-Ezra, Y. (2009). 480-Mbps, Bi-Directional, Ultra-Wideband Radio-Over-Fiber Transmission Using a 1308/1564-nm Reflective Electro-Absorption Transducer and Commercially Available VCSELs. Journal of Lightwave Technology, 27(3), 266-272. doi:10.1109/jlt.2008.2005644 es_ES
dc.description.references ECMA-368 International Standard: ‘High rate ultra wideband PHY and MAC standard’, December 2008 es_ES
dc.description.references FCC 02-48: ‘Revision of part 15 of the commission's rules regarding ultra-wideband transmission systems’, April 2002 es_ES
dc.description.references ECC∕DEC∕(06)04: ‘On the harmonised conditions for devices using ultra-wideband (UWB) technology in bands below 10.6 GHz’, March 2006 es_ES
dc.description.references ETSI EN 302 065 V1.1.1 (2008-02): ‘Electromagnetic compatibility and radio spectrum matters (ERM); ultra wideband (UWB) technologies for communication purposes; harmonized EN covering the essential requirements of article 3.2 of the R&TTE Directive’, February 2008 es_ES
dc.description.references WiMedia Alliance: Worldwide regulatory status [online]. Available at: http://www.wimedia.org es_ES
dc.description.references Mikroulis, S., Simos, H., Roditi, E., & Syvridis, D. (2005). Ultrafast all-optical AND logic operation based on four-wave mixing in a passive InGaAsP-InP microring resonator. IEEE Photonics Technology Letters, 17(9), 1878-1880. doi:10.1109/lpt.2005.853260 es_ES
dc.description.references Argyris, A., Hamacher, M., Chlouverakis, K. E., Bogris, A., & Syvridis, D. (2008). Photonic Integrated Device for Chaos Applications in Communications. Physical Review Letters, 100(19). doi:10.1103/physrevlett.100.194101 es_ES
dc.description.references Win, M. Z., & Scholtz, R. A. (1998). On the robustness of ultra-wide bandwidth signals in dense multipath environments. IEEE Communications Letters, 2(2), 51-53. doi:10.1109/4234.660801 es_ES
dc.description.references Flatman, A.: In-premises optical fibre installed base analysis to 2007. Presented at the IEEE 802.3 10GbE over FDDI Grade Fibre Study Group, Orlando, FL, March 2004 es_ES
dc.description.references Raddatz, L., & White, I. H. (1999). Overcoming the modal bandwidth limitation of multimode fiber by using passband modulation. IEEE Photonics Technology Letters, 11(2), 266-268. doi:10.1109/68.740725 es_ES
dc.description.references Hartmann, P., Xin Qian, Wonfor, A., Penty, R. V., & White, I. H. (2005). 1-20 GHz Directly Modulated Radio over MMF Link. 2005 International Topical Meeting on Microwave Photonics. doi:10.1109/mwp.2005.203548 es_ES
dc.description.references Kanprachar, S., & Jacobs, I. (2003). Diversity coding for subcarrier multiplexing on multimode fibers. IEEE Transactions on Communications, 51(9), 1546-1553. doi:10.1109/tcomm.2003.816981 es_ES
dc.description.references Gasulla, I., & Capmany, J. (2006). Transfer function of multimode fiber links using an electric field propagation model: Application to Radio over Fibre Systems. Optics Express, 14(20), 9051. doi:10.1364/oe.14.009051 es_ES
dc.description.references Al-Raweshidy, H., and Komaki, S.: ‘Radio over fiber technologies for mobile communication networks’, (Artech House 2002) es_ES
dc.description.references Sauer, M., Kobyakov, A., & George, J. (2007). Radio Over Fiber for Picocellular Network Architectures. Journal of Lightwave Technology, 25(11), 3301-3320. doi:10.1109/jlt.2007.906822 es_ES
dc.description.references Gomes, N. J., Nkansah, A., & Wake, D. (2008). Radio-Over-MMF Techniques—Part I: RF to Microwave Frequency Systems. Journal of Lightwave Technology, 26(15), 2388-2395. doi:10.1109/jlt.2008.925624 es_ES
dc.description.references Rajan, G., Semenova, Y., Pengfei Wang, & Farrell, G. (2009). Temperature-Induced Instabilities in Macro-Bend Fiber Based Wavelength Measurement Systems. Journal of Lightwave Technology, 27(10), 1355-1361. doi:10.1109/jlt.2009.2014081 es_ES
dc.description.references Montalvo, J., Vázquez, C., & Montero, D. S. (2006). CWDM self-referencing sensor network based on ring resonators in reflective configuration. Optics Express, 14(11), 4601. doi:10.1364/oe.14.004601 es_ES


This item appears in the following Collection(s)

Show simple item record