Mostrar el registro sencillo del ítem
dc.contributor.author | Mundi, I. | es_ES |
dc.contributor.author | Alemany Díaz, María Del Mar | es_ES |
dc.contributor.author | Poler, R. | es_ES |
dc.contributor.author | Fuertes-Miquel, Vicente S. | es_ES |
dc.date.accessioned | 2020-02-08T21:02:06Z | |
dc.date.available | 2020-02-08T21:02:06Z | |
dc.date.issued | 2019 | es_ES |
dc.identifier.issn | 0020-7543 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/136500 | |
dc.description.abstract | [EN] Lack of homogeneity in the product (LHP) appears in some production processes that confer heterogeneity in the characteristics of the products obtained. Supply chains with this issue have to classify the product in different homogeneous subsets, whose quantity is uncertain during the production planning process. This paper proposes a generic framework for reviewing in a unified way the literature about production planning models dealing with LHP uncertainty. This analysis allows the identification of similarities among sectors to transfer solutions between them and gaps existing in the literature for further research. The results of the review show: (1) sectors affected by LHP inherent uncertainty, (2) the inherent LHP uncertainty types modelled, and (3) the approaches for modelling LHP uncertainty most widely employed. Finally, we suggest a conceptual model reflecting the aspects to be considered when modelling the production planning in sectors with LHP in an uncertain environment. | es_ES |
dc.description.sponsorship | This research was initiated within the framework of the project funded by the Ministerio de Economía y Competitividad [Ref. DPI2011-23597] entitled ‘Methods and models for operations planning and order management in supply chains characterised by uncertainty in production due to the lack of product uniformity’ (PLANGES-FHP) already finished. After, the project leading to this application has received funding from the European Union’s research and innovation programme under the H2020 Marie Skłodowska-Curie Actions with the grant agreement No 691249, Project entitled ’Enhancing and implementing Knowledge based ICT solutions within high Riskand Uncertain Conditions for Agriculture Production Systems’ (RUC-APS). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Taylor & Francis | es_ES |
dc.relation.ispartof | International Journal of Production Research | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Planning | es_ES |
dc.subject | Optimisation | es_ES |
dc.subject | Production | es_ES |
dc.subject | Uncertainty | es_ES |
dc.subject | Mathematical modelling | es_ES |
dc.subject.classification | ORGANIZACION DE EMPRESAS | es_ES |
dc.subject.classification | MECANICA DE FLUIDOS | es_ES |
dc.title | Review of mathematical models for production planning under uncertainty due to lack of homogeneity: proposal of a conceptual model | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1080/00207543.2019.1566665 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/691249/EU/Enhancing and implementing Knowledge based ICT solutions within high Risk and Uncertain Conditions for Agriculture Production Systems/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//DPI2011-23597/ES/METODOS Y MODELOS PARA LA PLANIFICACION DE OPERACIONES Y GESTION DE PEDIDOS EN CADENAS DE SUMINISTRO CARACTERIZADAS POR LA FALTA DE HOMOGENEIDAD EN EL PRODUCTO/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Organización de Empresas - Departament d'Organització d'Empreses | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient | es_ES |
dc.description.bibliographicCitation | Mundi, I.; Alemany Díaz, MDM.; Poler, R.; Fuertes-Miquel, VS. (2019). Review of mathematical models for production planning under uncertainty due to lack of homogeneity: proposal of a conceptual model. International Journal of Production Research. 57(15-16):5239-5283. https://doi.org/10.1080/00207543.2019.1566665 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1080/00207543.2019.1566665 | es_ES |
dc.description.upvformatpinicio | 5239 | es_ES |
dc.description.upvformatpfin | 5283 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 57 | es_ES |
dc.description.issue | 15-16 | es_ES |
dc.relation.pasarela | S\376758 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Ahumada, O., Rene Villalobos, J., & Nicholas Mason, A. (2012). Tactical planning of the production and distribution of fresh agricultural products under uncertainty. Agricultural Systems, 112, 17-26. doi:10.1016/j.agsy.2012.06.002 | es_ES |
dc.description.references | Ahumada, O., & Villalobos, J. R. (2009). Application of planning models in the agri-food supply chain: A review. European Journal of Operational Research, 196(1), 1-20. doi:10.1016/j.ejor.2008.02.014 | es_ES |
dc.description.references | Alarcón, F., Alemany, M. M. E., Lario, F. C., & Oltra, R. F. (2011). La falta de homogeneidad del producto (FHP) en las empresas cerámicas y su impacto en la reasignación del inventario. Boletín de la Sociedad Española de Cerámica y Vidrio, 50(1), 49-58. doi:10.3989/cyv.072011 | es_ES |
dc.description.references | Albornoz, V. M., M. González-Araya, M. C. Gripe, and S. V. Rodrıguez. 2014. “A Mixed Integer Linear Program for Operational Planning in a Meat Packing Plant.” Accessed January 15, 2015. http://www.researchgate.net/profile/Victor_Albornoz/publication/268687089_A_Mixed_Integer_Linear_Program_for_Operational_Planning_in_a_Meat_Packing_Plant/links/547382bf0cf29afed60f55c7.pdf. | es_ES |
dc.description.references | José Alem, D., & Morabito, R. (2012). Production planning in furniture settings via robust optimization. Computers & Operations Research, 39(2), 139-150. doi:10.1016/j.cor.2011.02.022 | es_ES |
dc.description.references | Alemany, M. M. E., Lario, F.-C., Ortiz, A., & Gómez, F. (2013). Available-To-Promise modeling for multi-plant manufacturing characterized by lack of homogeneity in the product: An illustration of a ceramic case. Applied Mathematical Modelling, 37(5), 3380-3398. doi:10.1016/j.apm.2012.07.022 | es_ES |
dc.description.references | Alemany, M., Ortiz, A., & Fuertes-Miquel, V. S. (2018). A decision support tool for the order promising process with product homogeneity requirements in hybrid Make-To-Stock and Make-To-Order environments. Application to a ceramic tile company. Computers & Industrial Engineering, 122, 219-234. doi:10.1016/j.cie.2018.05.040 | es_ES |
dc.description.references | Alfalla-Luque, R., Medina-Lopez, C., & Dey, P. K. (2012). Supply chain integration framework using literature review. Production Planning & Control, 24(8-9), 800-817. doi:10.1080/09537287.2012.666870 | es_ES |
dc.description.references | Al-Othman, W. B. E., Lababidi, H. M. S., Alatiqi, I. M., & Al-Shayji, K. (2008). Supply chain optimization of petroleum organization under uncertainty in market demands and prices. European Journal of Operational Research, 189(3), 822-840. doi:10.1016/j.ejor.2006.06.081 | es_ES |
dc.description.references | Al-Shammari, A., & Ba-Shammakh, M. S. (2011). Uncertainty Analysis for Refinery Production Planning. Industrial & Engineering Chemistry Research, 50(11), 7065-7072. doi:10.1021/ie200313r | es_ES |
dc.description.references | Amaro, A. C. S., & Barbosa-Póvoa, A. P. F. D. (2009). The effect of uncertainty on the optimal closed-loop supply chain planning under different partnerships structure. Computers & Chemical Engineering, 33(12), 2144-2158. doi:10.1016/j.compchemeng.2009.06.003 | es_ES |
dc.description.references | ARAS, N., BOYACI, T., & VERTER, V. (2004). The effect of categorizing returned products in remanufacturing. IIE Transactions, 36(4), 319-331. doi:10.1080/07408170490279561 | es_ES |
dc.description.references | Aydin, R., Kwong, C. K., Geda, M. W., & Okudan Kremer, G. E. (2017). Determining the optimal quantity and quality levels of used product returns for remanufacturing under multi-period and uncertain quality of returns. The International Journal of Advanced Manufacturing Technology, 94(9-12), 4401-4414. doi:10.1007/s00170-017-1141-0 | es_ES |
dc.description.references | Bakhrankova, K., Midthun, K. T., & Uggen, K. T. (2014). Stochastic optimization of operational production planning for fisheries. Fisheries Research, 157, 147-153. doi:10.1016/j.fishres.2014.03.018 | es_ES |
dc.description.references | Banasik, A., Kanellopoulos, A., Claassen, G. D. H., Bloemhof-Ruwaard, J. M., & van der Vorst, J. G. A. J. (2017). Closing loops in agricultural supply chains using multi-objective optimization: A case study of an industrial mushroom supply chain. International Journal of Production Economics, 183, 409-420. doi:10.1016/j.ijpe.2016.08.012 | es_ES |
dc.description.references | Beaudoin, D., LeBel, L., & Frayret, J.-M. (2007). Tactical supply chain planning in the forest products industry through optimization and scenario-based analysis. Canadian Journal of Forest Research, 37(1), 128-140. doi:10.1139/x06-223 | es_ES |
dc.description.references | Begen, M. A., & Puterman, M. L. (2003). Development Of A Catch Allocation Tool Design For Production Planning At Js Mcmillan Fisheries. INFOR: Information Systems and Operational Research, 41(3), 235-244. doi:10.1080/03155986.2003.11732678 | es_ES |
dc.description.references | Benedito, E., & Corominas, A. (2010). Optimal manufacturing and remanufacturing capacities of systems with reverse logistics and deterministic uniform demand. Journal of Industrial Engineering and Management, 3(1). doi:10.3926/jiem.2010.v3n1.p33-53 | es_ES |
dc.description.references | Bertrand, J. W. ., & Rutten, W. G. M. . (1999). Evaluation of three production planning procedures for the use of recipe flexibility. European Journal of Operational Research, 115(1), 179-194. doi:10.1016/s0377-2217(98)00166-0 | es_ES |
dc.description.references | Björheden, R., & Helstad, K. (2005). Raw Material Procurement in Sawmills’ Business Level Strategy-A Contingency Perspective. International Journal of Forest Engineering, 16(2), 47-56. doi:10.1080/14942119.2005.10702513 | es_ES |
dc.description.references | Bohle, C., Maturana, S., & Vera, J. (2010). A robust optimization approach to wine grape harvesting scheduling. European Journal of Operational Research, 200(1), 245-252. doi:10.1016/j.ejor.2008.12.003 | es_ES |
dc.description.references | Cai, X., Lai, M., Li, X., Li, Y., & Wu, X. (2014). Optimal acquisition and production policy in a hybrid manufacturing/remanufacturing system with core acquisition at different quality levels. European Journal of Operational Research, 233(2), 374-382. doi:10.1016/j.ejor.2013.07.017 | es_ES |
dc.description.references | Carneiro, M. C., Ribas, G. P., & Hamacher, S. (2010). Risk Management in the Oil Supply Chain: A CVaR Approach. Industrial & Engineering Chemistry Research, 49(7), 3286-3294. doi:10.1021/ie901265n | es_ES |
dc.description.references | Chakraborty, M., & Chandra, M. K. (2005). Multicriteria decision making for optimal blending for beneficiation of coal: a fuzzy programming approach. Omega, 33(5), 413-418. doi:10.1016/j.omega.2004.07.005 | es_ES |
dc.description.references | LUO, C., & RONG, G. (2009). A Strategy for the Integration of Production Planning and Scheduling in Refineries under Uncertainty. Chinese Journal of Chemical Engineering, 17(1), 113-127. doi:10.1016/s1004-9541(09)60042-2 | es_ES |
dc.description.references | Davoli, G., Gallo, S., Collins, M., & Melloni, R. (2011). A stochastic simulation approach for production scheduling and investment planning in the tile industry. International Journal of Engineering, Science and Technology, 2(9). doi:10.4314/ijest.v2i9.64006 | es_ES |
dc.description.references | Denizel, M., Ferguson, M., & Souza, G. (2010). Multiperiod Remanufacturing Planning With Uncertain Quality of Inputs. IEEE Transactions on Engineering Management, 57(3), 394-404. doi:10.1109/tem.2009.2024506 | es_ES |
dc.description.references | Dong, M., Lu, S., & Han, S. (2011). Production Planning for Hybrid Remanufacturing and Manufacturing System with Component Recovery. Advances in Electrical Engineering and Electrical Machines, 511-518. doi:10.1007/978-3-642-25905-0_66 | es_ES |
dc.description.references | Dubois, D., Fargier, H., & Fortemps, P. (2003). Fuzzy scheduling: Modelling flexible constraints vs. coping with incomplete knowledge. European Journal of Operational Research, 147(2), 231-252. doi:10.1016/s0377-2217(02)00558-1 | es_ES |
dc.description.references | DUENYAS, I., & TSAI, C.-Y. (2000). Control of a manufacturing system with random product yield and downward substitutability. IIE Transactions, 32(9), 785-795. doi:10.1080/07408170008967438 | es_ES |
dc.description.references | Esteso, A., Alemany, M. M. E., & Ortiz, A. (2018). Conceptual framework for designing agri-food supply chains under uncertainty by mathematical programming models. International Journal of Production Research, 56(13), 4418-4446. doi:10.1080/00207543.2018.1447706 | es_ES |
dc.description.references | French, M. L., & LaForge, R. L. (2005). Closed-loop supply chains in process industries: An empirical study of producer re-use issues. Journal of Operations Management, 24(3), 271-286. doi:10.1016/j.jom.2004.07.012 | es_ES |
dc.description.references | Gallo, M., R. Grisi, G. Guizzi, and E. Romano. 2009. “A Comparison of Production Policies in Remanufacturing Systems,” Proceedings of the 8th WSEAS International Conference on System Science and Simulation in Engineering, ICOSSSE ‘09, pp. 334. | es_ES |
dc.description.references | Goodfellow, R., & Dimitrakopoulos, R. (2017). Simultaneous Stochastic Optimization of Mining Complexes and Mineral Value Chains. Mathematical Geosciences, 49(3), 341-360. doi:10.1007/s11004-017-9680-3 | es_ES |
dc.description.references | Graves, S. C. (2010). Uncertainty and Production Planning. Planning Production and Inventories in the Extended Enterprise, 83-101. doi:10.1007/978-1-4419-6485-4_5 | es_ES |
dc.description.references | Grillo, H., Alemany, M. M. E., Ortiz, A., & Fuertes-Miquel, V. S. (2017). Mathematical modelling of the order-promising process for fruit supply chains considering the perishability and subtypes of products. Applied Mathematical Modelling, 49, 255-278. doi:10.1016/j.apm.2017.04.037 | es_ES |
dc.description.references | Guan, Z., & Philpott, A. B. (2011). A multistage stochastic programming model for the New Zealand dairy industry. International Journal of Production Economics, 134(2), 289-299. doi:10.1016/j.ijpe.2009.11.003 | es_ES |
dc.description.references | Guide, V. D. R. (2000). Production planning and control for remanufacturing: industry practice and research needs. Journal of Operations Management, 18(4), 467-483. doi:10.1016/s0272-6963(00)00034-6 | es_ES |
dc.description.references | Gupta, V., & Grossmann, I. E. (2011). Solution strategies for multistage stochastic programming with endogenous uncertainties. Computers & Chemical Engineering, 35(11), 2235-2247. doi:10.1016/j.compchemeng.2010.11.013 | es_ES |
dc.description.references | Gupta, S., and Z. Nan. 2006. “‘Multiperiod Planning of Refinery Operations Under Market Uncertainty,’ AIChE Annual Meeting.” Conference Proceedings. | es_ES |
dc.description.references | Heckmann, I., Comes, T., & Nickel, S. (2015). A critical review on supply chain risk – Definition, measure and modeling. Omega, 52, 119-132. doi:10.1016/j.omega.2014.10.004 | es_ES |
dc.description.references | Heydari, J., & Ghasemi, M. (2018). A revenue sharing contract for reverse supply chain coordination under stochastic quality of returned products and uncertain remanufacturing capacity. Journal of Cleaner Production, 197, 607-615. doi:10.1016/j.jclepro.2018.06.206 | es_ES |
dc.description.references | Hovelaque, V., Duvaleix-Tréguer, S., & Cordier, J. (2009). Effects of constrained supply and price contracts on agricultural cooperatives. European Journal of Operational Research, 199(3), 769-780. doi:10.1016/j.ejor.2008.08.005 | es_ES |
dc.description.references | Hsieh, S., & Chiang, C.-C. (2001). Manufacturing-to-Sale Planning Model for Fuel Oil Production. The International Journal of Advanced Manufacturing Technology, 18(4), 303-311. doi:10.1007/s001700170070 | es_ES |
dc.description.references | Igarashi, M., de Boer, L., & Fet, A. M. (2013). What is required for greener supplier selection? A literature review and conceptual model development. Journal of Purchasing and Supply Management, 19(4), 247-263. doi:10.1016/j.pursup.2013.06.001 | es_ES |
dc.description.references | Jamshidi, M., & Osanloo, M. (2019). Reliability analysis of production schedule in multi-element deposits under grade-tonnage uncertainty with multi-destinations for the run of mine material. International Journal of Mining Science and Technology, 29(3), 483-489. doi:10.1016/j.ijmst.2018.04.016 | es_ES |
dc.description.references | Jin, X., Hu, S. J., Ni, J., & Xiao, G. (2013). Assembly Strategies for Remanufacturing Systems With Variable Quality Returns. IEEE Transactions on Automation Science and Engineering, 10(1), 76-85. doi:10.1109/tase.2012.2217741 | es_ES |
dc.description.references | Jindal, A., & Sangwan, K. S. (2016). Multi-objective fuzzy mathematical modelling of closed-loop supply chain considering economical and environmental factors. Annals of Operations Research, 257(1-2), 95-120. doi:10.1007/s10479-016-2219-z | es_ES |
dc.description.references | Johnson, P., G. Evatt, P. Duck, and S. Howell. 2010. “The Derivation and Impact of an Optimal Cut-off Grade Regime Upon Mine Valuations,” Proceedings of the World Congress on Engineering 2010 Vol I. | es_ES |
dc.description.references | Junior, M. L., & Filho, M. G. (2011). Production planning and control for remanufacturing: literature review and analysis. Production Planning & Control, 23(6), 419-435. doi:10.1080/09537287.2011.561815 | es_ES |
dc.description.references | Kamrad, B., & Ernst, R. (2001). An Economic Model for Evaluating Mining and Manufacturing Ventures with Output Yield Uncertainty. Operations Research, 49(5), 690-699. doi:10.1287/opre.49.5.690.10610 | es_ES |
dc.description.references | Kannegiesser, M., Günther, H.-O., van Beek, P., Grunow, M., & Habla, C. (2008). Value chain management for commodities: a case study from the chemical industry. OR Spectrum, 31(1), 63-93. doi:10.1007/s00291-008-0124-9 | es_ES |
dc.description.references | Karabuk, S. (2008). Production planning under uncertainty in textile manufacturing. Journal of the Operational Research Society, 59(4), 510-520. doi:10.1057/palgrave.jors.2602370 | es_ES |
dc.description.references | Khor, C. S., Elkamel, A., & Douglas, P. L. (2008). Stochastic Refinery Planning with Risk Management. Petroleum Science and Technology, 26(14), 1726-1740. doi:10.1080/10916460701287813 | es_ES |
dc.description.references | Kumral, M. (2004). Genetic algorithms for optimization of a mine system under uncertainty. Production Planning & Control, 15(1), 34-41. doi:10.1080/09537280310001654844 | es_ES |
dc.description.references | Lalmazloumian, M., and K. Y. Wong. 2012. “A Review of Modelling Approaches for Supply Chain Planning Under Uncertainty,” Service Systems and Service Management (ICSSSM), 2012 9th International Conference on, pp. 197. | es_ES |
dc.description.references | Leiras, A., Ribas, G., Hamacher, S., & Elkamel, A. (2013). Tactical and Operational Planning of Multirefinery Networks under Uncertainty: An Iterative Integration Approach. Industrial & Engineering Chemistry Research, 52(25), 8507-8517. doi:10.1021/ie302835n | es_ES |
dc.description.references | Liao, H., Deng, Q., & Wang, Y. (2017). Optimal Acquisition and Production Policy for End-of-Life Engineering Machinery Recovering in a Joint Manufacturing/Remanufacturing System under Uncertainties in Procurement and Demand. Sustainability, 9(3), 338. doi:10.3390/su9030338 | es_ES |
dc.description.references | Loomba, A. P. S., & Nakashima, K. (2011). Enhancing value in reverse supply chains by sorting before product recovery. Production Planning & Control, 23(2-3), 205-215. doi:10.1080/09537287.2011.591652 | es_ES |
dc.description.references | Macedo, P. B., Alem, D., Santos, M., Junior, M. L., & Moreno, A. (2015). Hybrid manufacturing and remanufacturing lot-sizing problem with stochastic demand, return, and setup costs. The International Journal of Advanced Manufacturing Technology, 82(5-8), 1241-1257. doi:10.1007/s00170-015-7445-z | es_ES |
dc.description.references | Martinez, L. 2009. “Why Accounting for Uncertainty and Risk Can Improve Final Decision-Making in Strategic Open Pit Mine Evaluation.” Project Evaluation Conference, Melbourne, pp. 1. | es_ES |
dc.description.references | Matamoros, M. E. V., & Dimitrakopoulos, R. (2016). Stochastic short-term mine production schedule accounting for fleet allocation, operational considerations and blending restrictions. European Journal of Operational Research, 255(3), 911-921. doi:10.1016/j.ejor.2016.05.050 | es_ES |
dc.description.references | Meredith, J. (1993). Theory Building through Conceptual Methods. International Journal of Operations & Production Management, 13(5), 3-11. doi:10.1108/01443579310028120 | es_ES |
dc.description.references | Miller, W. A., Leung, L. C., Azhar, T. M., & Sargent, S. (1997). Fuzzy production planning model for fresh tomato packing. International Journal of Production Economics, 53(3), 227-238. doi:10.1016/s0925-5273(97)00110-2 | es_ES |
dc.description.references | Mitra, K. (2009). Multiobjective optimization of an industrial grinding operation under uncertainty. Chemical Engineering Science, 64(23), 5043-5056. doi:10.1016/j.ces.2009.08.012 | es_ES |
dc.description.references | Moghaddam, K. S. (2015). Fuzzy multi-objective model for supplier selection and order allocation in reverse logistics systems under supply and demand uncertainty. Expert Systems with Applications, 42(15-16), 6237-6254. doi:10.1016/j.eswa.2015.02.010 | es_ES |
dc.description.references | Mula, J., Peidro, D., Díaz-Madroñero, M., & Vicens, E. (2010). Mathematical programming models for supply chain production and transport planning. European Journal of Operational Research, 204(3), 377-390. doi:10.1016/j.ejor.2009.09.008 | es_ES |
dc.description.references | Mula, J., Peidro, D., & Poler, R. (2010). The effectiveness of a fuzzy mathematical programming approach for supply chain production planning with fuzzy demand. International Journal of Production Economics, 128(1), 136-143. doi:10.1016/j.ijpe.2010.06.007 | es_ES |
dc.description.references | MUNDI, I., ALEMANY, M. M. E., BOZA, A., & POLER, R. (2013). A Model-Driven Decision Support System for the Master Planning of Ceramic Supply Chains with Non-uniformity of Finished Goods. Studies in Informatics and Control, 22(2). doi:10.24846/v22i2y201305 | es_ES |
dc.description.references | Mundi, M. I., Alemany, M. M. E., Poler, R., & Fuertes-Miquel, V. S. (2016). Fuzzy sets to model master production effectively in Make to Stock companies with Lack of Homogeneity in the Product. Fuzzy Sets and Systems, 293, 95-112. doi:10.1016/j.fss.2015.06.009 | es_ES |
dc.description.references | Munhoz, J. R., & Morabito, R. (2014). Optimization approaches to support decision making in the production planning of a citrus company: A Brazilian case study. Computers and Electronics in Agriculture, 107, 45-57. doi:10.1016/j.compag.2014.05.016 | es_ES |
dc.description.references | Olivetti, E. A., Gaustad, G. G., Field, F. R., & Kirchain, R. E. (2011). Increasing Secondary and Renewable Material Use: A Chance Constrained Modeling Approach To Manage Feedstock Quality Variation. Environmental Science & Technology, 45(9), 4118-4126. doi:10.1021/es103486s | es_ES |
dc.description.references | Osmani, A., & Zhang, J. (2013). Stochastic optimization of a multi-feedstock lignocellulosic-based bioethanol supply chain under multiple uncertainties. Energy, 59, 157-172. doi:10.1016/j.energy.2013.07.043 | es_ES |
dc.description.references | Paksoy, T., Pehlivan, N. Y., & Özceylan, E. (2012). Application of fuzzy optimization to a supply chain network design: A case study of an edible vegetable oils manufacturer. Applied Mathematical Modelling, 36(6), 2762-2776. doi:10.1016/j.apm.2011.09.060 | es_ES |
dc.description.references | Pauls-Worm, K. G. J., Hendrix, E. M. T., Haijema, R., & van der Vorst, J. G. A. J. (2014). An MILP approximation for ordering perishable products with non-stationary demand and service level constraints. International Journal of Production Economics, 157, 133-146. doi:10.1016/j.ijpe.2014.07.020 | es_ES |
dc.description.references | Peidro, D., Mula, J., Alemany, M. M. E., & Lario, F.-C. (2012). Fuzzy multi-objective optimisation for master planning in a ceramic supply chain. International Journal of Production Research, 50(11), 3011-3020. doi:10.1080/00207543.2011.588267 | es_ES |
dc.description.references | Peidro, D., Mula, J., Jiménez, M., & del Mar Botella, M. (2010). A fuzzy linear programming based approach for tactical supply chain planning in an uncertainty environment. European Journal of Operational Research, 205(1), 65-80. doi:10.1016/j.ejor.2009.11.031 | es_ES |
dc.description.references | Peidro, D., Mula, J., Poler, R., & Lario, F.-C. (2008). Quantitative models for supply chain planning under uncertainty: a review. The International Journal of Advanced Manufacturing Technology, 43(3-4), 400-420. doi:10.1007/s00170-008-1715-y | es_ES |
dc.description.references | Pendharkar, P. C. (1997). A fuzzy linear programming model for production planning in coal mines. Computers & Operations Research, 24(12), 1141-1149. doi:10.1016/s0305-0548(97)00024-5 | es_ES |
dc.description.references | Pendharkar, P. C. (2013). Scatter search based interactive multi-criteria optimization of fuzzy objectives for coal production planning. Engineering Applications of Artificial Intelligence, 26(5-6), 1503-1511. doi:10.1016/j.engappai.2013.01.001 | es_ES |
dc.description.references | Pieter van Donk, D. (2000). Customer‐driven manufacturing in the food processing industry. British Food Journal, 102(10), 739-747. doi:10.1108/00070700010362176 | es_ES |
dc.description.references | Pitty, S. S., Li, W., Adhitya, A., Srinivasan, R., & Karimi, I. A. (2008). Decision support for integrated refinery supply chains. Computers & Chemical Engineering, 32(11), 2767-2786. doi:10.1016/j.compchemeng.2007.11.006 | es_ES |
dc.description.references | Poles, R., and F. Cheong. 2009. “A System Dynamics Model for Reducing Uncertainty in Remanufacturing Systems,” PACIS 2009–13th Pacific Asia Conference on Information Systems: IT Services in a Global Environment. | es_ES |
dc.description.references | Pongsakdi, A., Rangsunvigit, P., Siemanond, K., & Bagajewicz, M. J. (2006). Financial risk management in the planning of refinery operations. International Journal of Production Economics, 103(1), 64-86. doi:10.1016/j.ijpe.2005.04.007 | es_ES |
dc.description.references | Radulescu, M., G. Zbaganu, and C. Z. Radulescu. 2008. “Crop Planning in the Presence of Production Quotas (Invited Paper),” Computer Modeling and Simulation, 2008.UKSIM 2008. Tenth International Conference on, pp. 549. | es_ES |
dc.description.references | Rajaram, K., & Karmarkar, U. S. (2002). Product Cycling With Uncertain Yields: Analysis and Application to the Process Industry. Operations Research, 50(4), 680-691. doi:10.1287/opre.50.4.680.2867 | es_ES |
dc.description.references | Ramasesh, R. V., & Browning, T. R. (2014). A conceptual framework for tackling knowable unknown unknowns in project management. Journal of Operations Management, 32(4), 190-204. doi:10.1016/j.jom.2014.03.003 | es_ES |
dc.description.references | Randhawa, S. U., & Bjarnason, E. T. (1995). A decision aid for coordinating fishing and fish processing. European Journal of Operational Research, 81(1), 62-75. doi:10.1016/0377-2217(93)e0132-h | es_ES |
dc.description.references | Rastogi, A. P., Fowler, J. W., Matthew Carlyle, W., Araz, O. M., Maltz, A., & Büke, B. (2011). Supply network capacity planning for semiconductor manufacturing with uncertain demand and correlation in demand considerations. International Journal of Production Economics, 134(2), 322-332. doi:10.1016/j.ijpe.2009.11.006 | es_ES |
dc.description.references | Ravi, V., & Reddy, P. J. (1998). Fuzzy linear fractional goal programming applied to refinery operations planning. Fuzzy Sets and Systems, 96(2), 173-182. doi:10.1016/s0165-0114(96)00294-1 | es_ES |
dc.description.references | Ribas, G. P., Hamacher, S., & Street, A. (2010). Optimization under uncertainty of the integrated oil supply chain using stochastic and robust programming. International Transactions in Operational Research, 17(6), 777-796. doi:10.1111/j.1475-3995.2009.00756.x | es_ES |
dc.description.references | Rico-Ramirez, V., I. E. Grossmann, B. Tarhan, S. Hernandez-Castro, and J. G. Segovia-Hernandez. 2009. “An Approach to the Representation of Gradual Uncertainty Resolution in Stochastic Multiperiod Planning,” 19th European Symposium on Computer Aided Process Engineering, vol. 26, pp. 713–718. | es_ES |
dc.description.references | Rocco, C. D., & Morabito, R. (2016). Production and logistics planning in the tomato processing industry: A conceptual scheme and mathematical model. Computers and Electronics in Agriculture, 127, 763-774. doi:10.1016/j.compag.2016.08.002 | es_ES |
dc.description.references | Roitsch, M., & Meyr, H. (s. f.). Oil Industry. Supply Chain Management and Advanced Planning, 399-414. doi:10.1007/978-3-540-74512-9_22 | es_ES |
dc.description.references | Rong, A., & Lahdelma, R. (2008). Fuzzy chance constrained linear programming model for optimizing the scrap charge in steel production. European Journal of Operational Research, 186(3), 953-964. doi:10.1016/j.ejor.2007.02.017 | es_ES |
dc.description.references | Schütz, P., & Tomasgard, A. (2011). The impact of flexibility on operational supply chain planning. International Journal of Production Economics, 134(2), 300-311. doi:10.1016/j.ijpe.2009.11.004 | es_ES |
dc.description.references | Sel, Ç., Bilgen, B., & Bloemhof-Ruwaard, J. (2017). Planning and scheduling of the make-and-pack dairy production under lifetime uncertainty. Applied Mathematical Modelling, 51, 129-144. doi:10.1016/j.apm.2017.06.002 | es_ES |
dc.description.references | Sel, Ç., Pınarbaşı, M., Soysal, M., & Çimen, M. (2017). A green model for the catering industry under demand uncertainty. Journal of Cleaner Production, 167, 459-472. doi:10.1016/j.jclepro.2017.08.100 | es_ES |
dc.description.references | Seth, N., Deshmukh, S. G., & Vrat, P. (2006). A conceptual model for quality of service in the supply chain. International Journal of Physical Distribution & Logistics Management, 36(7), 547-575. doi:10.1108/09600030610684971 | es_ES |
dc.description.references | Seuring, S., & Müller, M. (2008). From a literature review to a conceptual framework for sustainable supply chain management. Journal of Cleaner Production, 16(15), 1699-1710. doi:10.1016/j.jclepro.2008.04.020 | es_ES |
dc.description.references | Shi, J., Z. Liu, C. Zhu, and Y. Zhang. 2011. “Optimal Production Planning for a Closed Loop System with Quality Uncertainty of Used Product,” Proceedings – 2011 4th International Conference on Information Management, Innovation Management and Industrial Engineering, ICIII 2011, pp. 394. | es_ES |
dc.description.references | Su, T.-S., & Lin, Y.-F. (2015). Fuzzy multi-objective procurement/production planning decision problems for recoverable manufacturing systems. Journal of Manufacturing Systems, 37, 396-408. doi:10.1016/j.jmsy.2014.07.007 | es_ES |
dc.description.references | Tan, B., & Çömden, N. (2012). Agricultural planning of annual plants under demand, maturation, harvest, and yield risk. European Journal of Operational Research, 220(2), 539-549. doi:10.1016/j.ejor.2012.02.005 | es_ES |
dc.description.references | Tarhan, B., Grossmann, I. E., & Goel, V. (2011). Computational strategies for non-convex multistage MINLP models with decision-dependent uncertainty and gradual uncertainty resolution. Annals of Operations Research, 203(1), 141-166. doi:10.1007/s10479-011-0855-x | es_ES |
dc.description.references | Tong, K., Feng, Y., & Rong, G. (2011). Planning under Demand and Yield Uncertainties in an Oil Supply Chain. Industrial & Engineering Chemistry Research, 51(2), 814-834. doi:10.1021/ie200194w | es_ES |
dc.description.references | Van der Vorst, J. G. A. J., & Beulens, A. J. M. (2002). Identifying sources of uncertainty to generate supply chain redesign strategies. International Journal of Physical Distribution & Logistics Management, 32(6), 409-430. doi:10.1108/09600030210437951 | es_ES |
dc.description.references | Van Wezel, W., Van Donk, D. P., & Gaalman, G. (2005). The planning flexibility bottleneck in food processing industries. Journal of Operations Management, 24(3), 287-300. doi:10.1016/j.jom.2004.11.001 | es_ES |
dc.description.references | Vorst, Jacobus Gerardus Adrianus Johannes van der. 2000. “Effective Food Supply Chains: Generating, Modelling and Evaluating Supply Chain Scenarios.” Doctoral thesis, Wageningen Universiteit. | es_ES |
dc.description.references | Wang, J., & Shu, Y.-F. (2005). Fuzzy decision modeling for supply chain management. Fuzzy Sets and Systems, 150(1), 107-127. doi:10.1016/j.fss.2004.07.005 | es_ES |
dc.description.references | Wang, W., and Y. Zhang. 2006. “An Approach of Production Planning for Agile Supply Chain Quality Management,” American Control Conference, 2006 IEEE, pp. 2545. | es_ES |
dc.description.references | Wang, H.-F., & Zheng, K.-W. (2009). An optimal run-mode scheduling for oil refinery production–a case study on Taiwan CPC Corporation. Production Planning & Control, 21(3), 301-318. doi:10.1080/09537280903382845 | es_ES |
dc.description.references | Wazed, M. A., Ahmed, S., & Nukman, Y. B. (2011). Mathematical models for process commonality under quality and resources breakdown in multistage production. Journal of Zhejiang University-SCIENCE A, 12(11), 837-848. doi:10.1631/jzus.a1000477 | es_ES |
dc.description.references | Wu, C.-H., Lin, J. T., & Wu, H.-H. (2009). Robust production and transportation planning in thin film transistor-liquid crystal display (TFT-LCD) industry under demand and price uncertainties. International Journal of Production Research, 48(20), 6037-6060. doi:10.1080/00207540903176697 | es_ES |
dc.description.references | Xiao, R., Cai, Z., & Zhang, X. (2012). A production optimization model of supply-driven chain with quality uncertainty. Journal of Systems Science and Systems Engineering, 21(2), 144-160. doi:10.1007/s11518-011-5184-8 | es_ES |
dc.description.references | Yazıcı, E., Büyüközkan, G., & Baskak, M. (2016). A New Extended MILP MRP Approach to Production Planning and Its Application in the Jewelry Industry. Mathematical Problems in Engineering, 2016, 1-18. doi:10.1155/2016/7915673 | es_ES |
dc.description.references | Kazemi Zanjani, M., Ait-Kadi, D., & Nourelfath, M. (2010). Robust production planning in a manufacturing environment with random yield: A case in sawmill production planning. European Journal of Operational Research, 201(3), 882-891. doi:10.1016/j.ejor.2009.03.041 | es_ES |
dc.description.references | Zanjani, M. K., Kadi, D. A., & Nourelfath, M. (2013). A stochastic programming approach for sawmill production planning. International Journal of Mathematics in Operational Research, 5(1), 1. doi:10.1504/ijmor.2013.050604 | es_ES |
dc.description.references | Zanjani, M. K., Ait-Kadi, D., & Nourelfath, M. (2013). An accelerated scenario updating heuristic for stochastic production planning with set-up constraints in sawmills. International Journal of Production Research, 51(4), 993-1005. doi:10.1080/00207543.2012.661088 | es_ES |
dc.description.references | Kazemi Zanjani, M., Nourelfath, M., & Ait-Kadi, D. (2009). A multi-stage stochastic programming approach for production planning with uncertainty in the quality of raw materials and demand. International Journal of Production Research, 48(16), 4701-4723. doi:10.1080/00207540903055727 | es_ES |
dc.description.references | Kazemi Zanjani, M., Nourelfath, M., & Ait-Kadi, D. (2011). Production planning with uncertainty in the quality of raw materials: a case in sawmills. Journal of the Operational Research Society, 62(7), 1334-1343. doi:10.1057/jors.2010.30 | es_ES |
dc.description.references | Zeballos, L. J., Gomes, M. I., Barbosa-Povoa, A. P., & Novais, A. Q. (2012). Addressing the uncertain quality and quantity of returns in closed-loop supply chains. Computers & Chemical Engineering, 47, 237-247. doi:10.1016/j.compchemeng.2012.06.034 | es_ES |
dc.description.references | Zhang, J., Wen, Y., & Xu, Q. (2012). Simultaneous Optimization of Crude Oil Blending and Purchase Planning with Delivery Uncertainty Consideration. Industrial & Engineering Chemistry Research, 51(25), 8453-8464. doi:10.1021/ie102499p | es_ES |
dc.description.references | Zimberg, B., & Testuri, C. E. (2006). Stochastic analysis of crude oil procurement and processing under uncertain demand for bunker fuel oil. International Transactions in Operational Research, 13(5), 387-402. doi:10.1111/j.1475-3995.2006.00554.x | es_ES |