- -

A review of modelling and optimisation methods applied to railways energy consumption

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

A review of modelling and optimisation methods applied to railways energy consumption

Show full item record

Martínez Fernández, P.; Villalba Sanchis, I.; Yepes, V.; Insa Franco, R. (2019). A review of modelling and optimisation methods applied to railways energy consumption. Journal of Cleaner Production. 222:153-162. https://doi.org/10.1016/j.jclepro.2019.03.037

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/136757

Files in this item

Item Metadata

Title: A review of modelling and optimisation methods applied to railways energy consumption
Author: Martínez Fernández, P. Villalba Sanchis, Ignacio Yepes, V. Insa Franco, Ricardo
UPV Unit: Universitat Politècnica de València. Instituto del Transporte y Territorio - Institut del Transport i Territori
Universitat Politècnica de València. Departamento de Ingeniería e Infraestructura de los Transportes - Departament d'Enginyeria i Infraestructura dels Transports
Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos - Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports
Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil
Issued date:
Abstract:
[EN] Railways are a rather efficient transport mean, and yet there is increasing interest in reducing their energy consumption and making them more sustainable in the current context of climate change. Many studies try to ...[+]
Subjects: Railways , Energy efficiency , Modelling , Optimisation , Meta-heuristics
Copyrigths: Reserva de todos los derechos
Source:
Journal of Cleaner Production. (issn: 0959-6526 )
DOI: 10.1016/j.jclepro.2019.03.037
Publisher:
Elsevier
Publisher version: https://doi.org/10.1016/j.jclepro.2019.03.037
Type: Artículo

recommendations

 

recommendations

 

This item appears in the following Collection(s)

Show full item record